Multiband Image Fusion Based on Spectral Unmixing
Q. Wei, Member, IEEE, José Bioucas-Dias, Senior Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE, Jean-Yves Tourneret, Senior Member, IEEE, Marcus Chen, and Simon Godsill, Member, IEEE

Abstract—This paper presents a multiband image fusion algorithm based on unsupervised spectral unmixing for combining a high-spatial–low-spectral-resolution image and a low-spatial–high-spectral-resolution image. The widely used linear observation model (with additive Gaussian noise) is combined with the linear spectral mixture model to form the likelihoods of the observations. The nonnegativity and sum-to-one constraints resulting from the intrinsic physical properties of the abundances are introduced as prior information to regularize this ill-posed problem. The joint fusion and unmixing problem is then formulated as maximizing the joint posterior distribution with respect to the endmember signatures and abundance maps. This optimization problem is attacked with an alternating optimization strategy. The two resulting subproblems are convex and are solved efficiently using the alternating direction method of multipliers. Experiments are conducted for both synthetic and semi-real data. Simulation results show that the proposed unmixing-based fusion scheme improves both the abundance and endmember estimation compared with the state-of-the-art joint fusion and unmixing algorithms.

Index Terms—Alternating direction method of multipliers, Bayesian estimation, block circulant matrix, block coordinate descent (BCD), multiband image fusion, Sylvester equation.

I. INTRODUCTION

USING multiple multiband images enables a synergetic exploitation of complementary information obtained by sensors of different spectral ranges and different spatial resolutions. In general, a multiband image can be represented as a 3-D data cube indexed by three exploratory variables (x, y, λ), where x and y are the two spatial dimensions of the scene, and λ is the spectral dimension (covering a range of wavelengths). Typical examples of multiband images include hyperspectral (HS) images [2], multispectral (MS) images [3], integral field spectrographs [4], and magnetic resonance spectroscopy images [5]. However, multiband images with high spectral resolution generally suffer from the limited spatial resolution of the data acquisition devices, mainly due to physical and technological reasons. These limitations make it infeasible to acquire a high-spectral-resolution multiband image with a spatial resolution comparable to those of MS and panchromatic (PAN) images (which are acquired in much fewer bands) [6]. For example, HS images benefit from excellent spectroscopic properties with several hundreds or thousands of contiguous bands but are limited by their relatively low spatial resolution [7]. As a consequence, reconstructing a high-spatial–high-spectral multiband image from multiple and complementary observed images, although challenging, is a crucial inverse problem that has been addressed in various scenarios. In particular, fusing a high-spatial–low-spectral-resolution image and a low-spatial–high-spectral-resolution image is an archetypal instance of multiband image reconstruction, such as pansharpening (MS+PAN) [8] or HS pansharpening (HS+PAN) [9]. The interested reader is invited to consult [8] and [9] for an overview of the HS pansharpening problems and the corresponding fusion algorithms. Note that in this paper, we focus on image fusion at the pixel level instead of at the feature or decision level. The estimated image, with high spatial and high spectral resolutions may then be used in many applications, such as material unmixing, visualization, image interpretation and analysis, regression, classification, and change detection.

In general, the degradation mechanisms in HS, MS, and PAN imaging, with respect to the target high-spatial–high-spectral image can be summarized as spatial and spectral transformations. Thus, the multiband image fusion problem can be interpreted as restoring a 3-D data cube from two degraded data cubes, which is an inverse problem. As this inverse problem is generally ill-posed, introducing prior distributions (regularizers in the regularization framework) to regularize the target image has been widely explored [10]–[12]. Regarding regularization, the usual high spectral and spatial correlations of the target images imply that they admit sparse or low-rank representations, which has in fact been exploited in, for example, [10]–[17].

In [14], a maximum a posteriori (MAP) estimator incorporating a stochastic mixing model has been designed for the fusion of HS and MS images. In [18], a nonnegative sparse...
promoting algorithm for fusing HS and RGB images has been developed by using an alternating optimization algorithm. However, both approaches developed in [14] and [18] require a very basic assumption that a low-spatial-resolution pixel is obtained by averaging the high-resolution pixels belonging to the same area, whose size depends on the downsampling ratio. This nontrivial assumption, which is also referred to as pixel aggregation, implies that the fusion of two multiband images can be divided into fusing small blocks, which greatly decreases the complexity of the overall problem. Note that this assumption has also been used in [17], [19], and [20]. However, this averaging assumption can be violated easily as the area in a high-resolution image corresponding to a low-resolution pixel can be arbitrarily large (depending on the spatial blurring) and the downsampling ratio is generally fixed (depending on the sensor physical characteristics).

To overcome this limitation, a more general forward model, which formulates the blurring and downsampling as two separate operations, has been recently developed and widely used [9], [10], [12], [15], [21], [22]. Based on this model, a nonnegative matrix factorization (NMF) pansharpening of an HS image has been proposed in [21]. Similar studies have been developed independently in [16], [23], and [24]. Later, Yokoya et al. have proposed to use a coupled NMF (CNMF) unmixing for the fusion of low-spatial-resolution HS and high-spatial-resolution MS data, where both HS and MS data are alternately unmixed into endmember and abundance matrices by the CNMF algorithm [15]. A similar fusion and unmixing framework was recently introduced in [25], in which the alternating NMF steps in CNMF were replaced by alternating proximal forward–backward steps. The common point of these works is to learn endmembers from the HS image and abundances from the MS image alternatively instead of using both HS and MS jointly, leading to simple update rules. More specifically, this approximation helps to circumvent the need for a deconvolution, upsampling, and linear regression all embedded in the proposed joint fusion method. While that approximation simplifies the fusion process, it does not use the abundances estimated from the HS image and the endmember signatures estimated from the MS image, thus not fully exploiting the spectral and spatial information in both images. To fully exploit the spatial and spectral information contained in HS and MS data pairs, we retain the above degradation model but propose to minimize the cost function associated with the two data terms directly instead of decoupling the HS and MS terms (fusing approximately). The associated minimization problem will be solved in a solid mathematical framework using recently developed optimization tools.

More specifically, we formulate the unmixing-based multiband image fusion problem as an inverse problem in which the regularization is implicitly imposed by a low-rank representation inherent to the linear spectral mixture model and by nonnegativity and sum-to-one constraints resulting from the intrinsic physical properties of the abundances. In the proposed approach, the endmember signatures and abundances are jointly estimated from the observed multiband images. Note again that the use of both data sources for estimating endmembers or abundances is the main difference from current state-of-the-art methods. The optimization with respect to the endmember signatures and the abundances are both constrained linear regression problems, which can be solved efficiently by the alternating direction method of multipliers (ADMM).

The remainder of this paper is organized as follows. Section II gives a short introduction of the widely used linear mixture model and forward model for multiband images. Section III formulates the unmixing-based fusion problem as an optimization problem, which is solved using the Bayesian framework by introducing the popular constraints associated with the endmembers and abundances. The proposed fast alternating optimization algorithm is presented in Section IV. Section V presents experimental results assessing the accuracy and the numerical efficiency of the proposed method. Conclusions are finally reported in Section VI.

II. Problem Statement

To better distinguish spectral and spatial properties, the pixels of the target multiband image, which is of high spatial and high spectral resolutions, can be rearranged to build an \(m_\lambda \times n \) matrix \(X \), where \(m_\lambda \) is the number of spectral bands, and \(n = n_r \times n_c \) is the number of pixels in each band (\(n_r \) and \(n_c \) represent the numbers of rows and columns, respectively). In other words, each column of the matrix \(X \) consists of a \(m_\lambda \)-valued pixel, and each row gathers all the pixel values in a given spectral band.

A. Linear Mixture Model

This work exploits an intrinsic property of multiband images, according to which each spectral vector of an image can be represented by a linear mixture of several spectral signatures, which is referred to as endmembers. Mathematically, we have

\[
X = MA
\]

(1)

where \(M \in \mathbb{R}^{m_\lambda \times p} \) is the endmember matrix whose columns are spectral signatures, and \(A \in \mathbb{R}^{p \times n} \) is the corresponding abundance matrix whose columns are abundance fractions. This linear mixture model has been widely used in HS unmixing (see [26] for a detailed review).

B. Forward Model

Based on the pixel ordering introduced at the beginning of Section II, any linear operation applied to the left (right) side of \(X \) describes a spectral (spatial) degradation action. In this paper, we assume that two complementary images of high spectral or high spatial resolutions, respectively, are available to reconstruct the target high-spectral–high-spatial-resolution target image. These images result from linear spectral and spatial degradations of the full resolution image \(X \), according to the popular models

\[
Y_M = RX + N_M
\]
\[
Y_H = XBS + N_H
\]

(2)

where

- \(X \in \mathbb{R}^{m_\lambda \times n} \) is the full-resolution target image as described in Section II-A;
The noise matrices are assumed distributed according to the following matrix normal distributions:

\[\mathbf{N}_M \sim \mathcal{MN}_{m_1,m_2} (\mathbf{0}_{m_1,m_2}, \mathbf{A}_M, \mathbf{I}_m) \]
\[\mathbf{N}_H \sim \mathcal{MN}_{n_1,n_2} (\mathbf{0}_{n_1,n_2}, \mathbf{A}_H, \mathbf{I}_n) \]

where \(\mathbf{0}_{a,b} \) is an \(a \times b \) matrix of zeros, and \(\mathbf{I}_a \) is the \(a \times a \) identity matrix. The column covariance matrices are assumed diagonal matrices, whose diagonal elements can vary depending on the noise power in the different bands. More specifically, \(\mathbf{A}_H = \text{diag}(s_{H,1}^2, \ldots, s_{H,m_2}^2) \) and \(\mathbf{A}_M = \text{diag}(s_{M,1}^2, \ldots, s_{M,n_2}^2) \), where diag is an operator transforming a vector into a diagonal matrix, whose diagonal terms are the elements of this vector.

The matrix (2) has been widely advocated for the pansharpening and HS pansharpening problems, which consist of fusing a PAN image with an MS or an HS image [9], [28], [29]. Similarly, most of the techniques developed to fuse MS and HS images also rely on a similar linear model [11], [15], [30]–[34]. From an application point of view, this model is also important as motivated by recent national programs, e.g., the Japanese next-generation spaceborne HS image suite (HISUI), which acquires and fuses the coregistered HS and MS images for the same scene under the same conditions, following this linear model [35].

C. Composite Fusion Model

Combining the linear mixture model (1) and the forward model (2) leads to

\[\mathbf{Y}_M = \mathbf{RMA} + \mathbf{N}_M \]
\[\mathbf{Y}_H = \mathbf{MABS} + \mathbf{N}_H \]

where all matrix dimensions and their respective relations are summarized in Table I.

Note that the matrix \(\mathbf{M} \) can be selected from a known spectral library [36] or estimated a priori from the HS data [37]. Moreover, it can be estimated jointly with the abundance matrix \(\mathbf{A} \) [38]–[40], which will be the case in this work.

D. Statistical Methods

To summarize, the problem of fusing and unmixing high-spectral and high-spatial resolution images can be formulated as estimating the unknown matrices \(\mathbf{M} \) and \(\mathbf{A} \) from (3), which can be regarded as a joint NMF problem. As is well known, the NMF problem is nonconvex and has no unique solution, leading to an ill-posed problem. Thus, it is necessary to incorporate some intrinsic constraints or prior information to regularize this problem, improving the conditioning of the problem.

Various priors have been already advocated to regularize the multiband image fusion problem, such as Gaussian priors [10], [41], sparse representations [11], or total variation (TV) priors [12]. The choice of the prior usually depends on the information resulting from previous experiments or from a subjective view of constraints affecting the unknown model parameters [42], [43]. The inference of \(\mathbf{M} \) and \(\mathbf{A} \) (whatever the form chosen for the prior) is a challenging task, mainly due to the large size of \(\mathbf{X} \) and to the presence of the downsampling operator \(\mathbf{S} \), which prevents any direct use of the Fourier transform to diagonalize the spatial degradation operator \(\mathbf{BS} \). To overcome this difficulty, several computational strategies, including Markov chain Monte Carlo (MCMC) [10], block coordinate descent method (BCD) [44], and tailored variable splitting under the ADMM framework [12], have been proposed and applied to different kinds of priors, e.g., the empirical Gaussian prior [10], [41], the sparse-representation-based prior [11], or the TV prior [12].

More recently, contrary to the algorithms described above, a much more efficient method, named Robust Fast fusion based on Sylvester Equation (R-FUSE) has been proposed to solve explicitly an underlying Sylvester equation associated with the fusion problem derived from (3) [45], [60]. This solution can be implemented per se to compute the maximum-likelihood estimator in a computationally efficient manner, which also has the great advantage of being easily generalizable within a Bayesian framework when considering various priors.

In this paper, we propose to form priors by exploiting the intrinsic physical properties of abundances and endmembers, which is widely used in conventional unmixing, to infer \(\mathbf{A} \) and \(\mathbf{M} \) from the observed data \(\mathbf{Y}_M \) and \(\mathbf{Y}_H \). More details are given in the following.

III. Problem Formulation

Following the Bayes rule, the posterior distribution of the unknown parameters \(\mathbf{M} \) and \(\mathbf{A} \) can be obtained by the product

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>no. of pixels in each row of (\mathbf{Y}_H)</td>
<td>(m = n/d)</td>
</tr>
<tr>
<td>(n)</td>
<td>no. of pixels in each row of (\mathbf{Y}_M)</td>
<td>(n = m \times d)</td>
</tr>
<tr>
<td>(d)</td>
<td>decimation factor</td>
<td>(d = n/m)</td>
</tr>
<tr>
<td>(m_\lambda)</td>
<td>no. of bands in (\mathbf{Y}_H)</td>
<td>(m_\lambda \gg n_\lambda)</td>
</tr>
<tr>
<td>(n_\lambda)</td>
<td>no. of bands in (\mathbf{Y}_M)</td>
<td>(n_\lambda \ll m_\lambda)</td>
</tr>
</tbody>
</table>
of their likelihoods and prior distributions, which are detailed in what follows.

A. Likelihoods (Data Fidelity Term)

Using the statistical properties of the noise matrices N_M and N_H, Y_M, and Y_H have matrix normal distributions, i.e.,

$$p(Y_M|M, A) = MN_{n_x,n}(RMA, A_M, I_n)$$

$$p(Y_H|M, A) = MN_{m_x,m}(MABS, A_H, I_m).$$

(4)

As the collected measurements Y_M and Y_H have been acquired by different (possibly heterogeneous) sensors, the noise matrices N_M and N_H are sensor dependent and can be generally assumed statistically independent. Therefore, Y_M and Y_H are independent conditionally upon the unobserved scene $X = MA$. As a consequence, the joint likelihood function of the observed data is

$$p(Y_M, Y_H|M, A) = p(Y_M|M, A)p(Y_H|M, A).$$

(5)

The negative logarithm of the likelihood is

$$-\log p(Y_M, Y_H|M, A) = -\log p(Y_M|M, A) - \log p(Y_H|M, A) + C$$

$$= \frac{1}{2} \left\| A_H^{-\frac{1}{2}} Y_H - MABS \right\|_F^2 + \frac{1}{2} \left\| A_M^{-\frac{1}{2}} Y_M - RMA \right\|_F^2 + C$$

where $\|X\|_F = \sqrt{\text{trace}(X^T X)}$ is the Frobenius norm of X, and C is a constant.

B. Priors (Regularization Term)

1) Abundances: As the mixing coefficient $a_{i,j}$ (the element located in the ith row and jth column of A) represents the proportion (or probability of occurrence) of the ith endmember in the jth measurement [26], [46], the abundance vectors satisfy the following abundance nonnegativity constraint (ANC) and abundance sum-to-one constraint (ASC):

$$a_{j} \geq 0 \quad 1^n_p a_j = 1 \quad \forall j \in \{1, \ldots, n\}$$

(6)

where a_j is the jth column of A, \geq means “element-wise greater than,” and 1^n_p is a $p \times 1$ vector with all ones. Accounting for all the image pixels, the constraints (6) can be rewritten in matrix form

$$A \geq 0 \quad 1^n_p A = 1^n_n.$$

(7)

Moreover, the ANC and ASC constraints can be converted into a uniform distribution for A on the feasible region \mathcal{A}, i.e.,

$$p(A) = \begin{cases} c_A, & \text{if } A \in \mathcal{A} \\ 0, & \text{elsewhere} \end{cases}$$

(8)

where $\mathcal{A} = \{A|A \geq 0, 1^n_p A = 1^n_n\}$, $c_A = 1/\text{vol}(\mathcal{A})$, and $\text{vol}(\mathcal{A}) = \int_{A \in \mathcal{A}} dA$ is the volume of the set \mathcal{A}.

2) Endmembers: As the endmember signatures represent the reflectances of different materials, each element of the matrix M should be between 0 and 1. Thus, the constraints for M can be written as

$$0 \leq M \leq 1.$$

(9)

Similarly, these constraints for the matrix M can be converted into a uniform distribution on the feasible region \mathcal{M}

$$p(M) = \begin{cases} c_M, & \text{if } M \in \mathcal{M} \\ 0, & \text{elsewhere} \end{cases}$$

where $\mathcal{M} = \{M|0 \leq M \leq 1\}$ and $c_M = 1/\text{vol}(\mathcal{M})$.

C. Posteriors (Constrained Optimization)

Combining the likelihoods (5) and the priors $p(M)$ and $p(A)$, the Bayes theorem provides the posterior distribution of M and A

$$p(M, A|Y_H, Y_M) \propto p(Y_H|M, A)p(Y_M|M, A)p(M)p(A)$$

where \propto means “proportional to.” Thus, the unmixing-based fusion problem can be interpreted as maximizing the joint posterior distribution of A and M. Moreover, by taking the negative logarithm of $p(M, A|Y_H, Y_M)$, the MAP estimator of (A, M) can be obtained by solving the following minimization:

$$\min_{M,A} L(M, A) \text{ s.t. } A \geq 0 \text{ and } 1^n_p A = 1^n_n$$

$$0 \leq M \leq 1$$

(10)

where

$$L(M, A) = \frac{1}{2} \left\| A_H^{-\frac{1}{2}} Y_H - MABS \right\|_F^2 + \frac{1}{2} \left\| A_M^{-\frac{1}{2}} Y_M - RMA \right\|_F^2.$$

In this formulation, the fusion problem can be regarded as a generalized unmixing problem, which includes two data fidelity terms. Thus, both images contribute to the estimation of the endmember signatures (endmember extraction step) and the high-resolution abundance maps (inversion step). For the endmember estimation, a popular strategy is to use a subspace transformation as a preprocessing step, such as in [39], [47]. In general, the subspace transformation is learned a priori from the high-spectral-resolution image empirically, e.g., from the HS data. This empirical subspace transformation alleviates the computational burden greatly and can be incorporated in our framework easily.

IV. ALTERNATING OPTIMIZATION SCHEME

Although problem (10) is convex with respect to A and M separately, it is nonconvex with respect to these two matrices jointly and has more than one solution. We propose an optimization technique that alternates optimizations with respect to A and M, which is also referred to as a BCD algorithm. The optimization with respect to A (M) conditional on M (A) can be achieved efficiently with the ADMM algorithm [48],

$\text{WEI et al.:	MULTIBAND IMAGE FUSION BASED ON SPECTRAL UNMIXING}$

7239
which converges to a solution of the respective convex optimization under some mild conditions. The resulting alternating optimization algorithm, referred to as fusion based on unmixing for multiband images (FUMI), is detailed in Algorithm 1, where EEA(Y_H) in line 1 represents an endmember extraction algorithm (EEA) to estimate endmembers from the HS data. The optimization steps with respect to A and M are detailed in the following.

Algorithm 1: Multi-band Image Fusion based on Spectral Unmixing (FUMI)

```
/* Initialize M */
1 M(0) ← EEA(Y_H);
2 for t = 1, 2, ... to stopping rule do
   /* Optimize w.r.t. A using ADMM (see Algorithm 2) */
   3 A(t) ∈ arg min_A L(M(t−1), A);
   /* Optimize w.r.t. M using ADMM (see Algorithm 5) */
   4 M(t) ∈ arg min_M L(M, A(t));
5 end
6 Set A = A(t) and M = M(t);
Output: A and M
```

A. Convergence Analysis

To analyze the convergence of Algorithm 1, we recall a convergence criterion for the BCD algorithm stated in [44, pp. 273].

Theorem 1 (Bertsekas, [44]; Proposition 2.7.1): Suppose that L is continuously differentiable with respect to A and M over the convex set A × M. Suppose also that for each {A, M}, L(A, M) viewed as a function of A attains a unique minimum A. The similar uniqueness also holds for M. Let {A(t), M(t)} be the sequence generated by the BCD method as in Algorithm 1. Then, every limit point of {A(t), M(t)} is a stationary point.

The target function defined in (10) is continuously differentiable. Note that it is not guaranteed that the minima with respect to A or M are unique. We may however argue that a simple modification of the objective function, consisting in adding the quadratic term α_1∥A∥_F^2 + α_2∥M∥_F^2, where α_1 and α_2 are very small, and thus obtaining a strictly convex objective function, ensures that the minima of (11) and (15) are uniquely attained; thus, we may invoke Theorem 1. In practice, even without including the quadratic terms, we have systematically observed convergence of Algorithm 1.

B. Optimization with Respect to the Abundance Matrix A (M Fixed)

The minimization of L(M, A) with respect to the abundance matrix A conditional on M can be formulated as

\[
\min_A \frac{1}{2} \left\| \Lambda_H^{-\frac{1}{2}} (Y_H - \text{MABS}) \right\|_F^2 + \frac{1}{2} \left\| \Lambda_M^{-\frac{1}{2}} (Y_M - \text{RMA}) \right\|_F^2 \\
\text{s.t. } A \geq 0 \text{ and } 1^T_p A = 1^T_p.
\]

This constrained minimization problem can be solved by introducing an auxiliary variable to split the objective and the constraints, which is the spirit of the ADMM algorithm. More specifically, by introducing the splitting (11) with respect to A, the optimization problem (11) can be written as

\[
\min_{A, V} L_1(A) + \iota_A(V) \text{ s.t. } V = A
\]

where

\[
L_1(A) = \frac{1}{2} \left\| \Lambda_H^{-\frac{1}{2}} (Y_H - \text{MABS}) \right\|_F^2 + \frac{1}{2} \left\| \Lambda_M^{-\frac{1}{2}} (Y_M - \text{RMA}) \right\|_F^2
\]

\[
\iota_A(V) = \begin{cases} 0, & \text{if } V \in A \\ +\infty, & \text{otherwise.} \end{cases}
\]

Recall that A = {A|A ≥ 0, 1^T_p A = 1^T_p}.

The augmented Lagrangian associated with the optimization of A can be written as

\[
\mathcal{L}(A, V, G) = \frac{1}{2} \left\| \Lambda_H^{-\frac{1}{2}} (Y_H - \text{MABS}) \right\|_F^2 + \iota_A(V)
\]

\[
+ \frac{1}{2} \left\| \Lambda_M^{-\frac{1}{2}} (Y_M - \text{RMA}) \right\|_F^2 + \frac{\mu}{2} \left\| A - V - G \right\|_F^2
\]

where G is the so-called scaled dual variable, and μ > 0 is the augmented Lagrange multiplier, weighting the augmented Lagrangian term [48]. The ADMM summarized in Algorithm 2 consists of an A-minimization step, a V-minimization step, and a dual variable G update step (see [48] for further details about ADMM). Note that the operator Π_A(X) in Algorithm 2 represents projecting the variable X onto a set A, which is defined as

\[
\Pi_A(X) = \arg \min_{Z \in A} \left\| Z - X \right\|_F^2.
\]

Algorithm 2: ADMM sub-iterations to estimate A

```
Input: Y_M, Y_H, A_M, A_H, R, B, S, µ > 0
1 Initialization: V(0), G(0);
2 for k = 0 to stopping rule do
   /* Optimize w.r.t A (Algorithm 3) */
   3 A^{(t,k+1)} ∈ arg min_A \mathcal{L}(A, V^{(k)}, G^{(k)});
   /* Optimize w.r.t V (Algorithm 4) */
   4 V^{(k+1)} ← Π_A(A^{(t,k+1)} - G^{(k)});
   /* Update Dual Variable G */
   5 G^{(k+1)} ← G^{(k)} - (A^{(t,k+1)} - V^{(k+1)});
4 end
7 Set A^{(t+1)} = A^{(t,k+1)};
Output: A^{(t+1)}
```

Given that the functions L_1(A) and \iota_A(V) are both closed, proper, and convex, thus, invoking the Eckstein and Bertsekas theorem [49, Th. 8], the convergence of Algorithm 2 to a solution of (11) is guaranteed.

1) Updating A: In order to minimize (12) with respect to A, we solve the equation ∂\mathcal{L}(A, V^{(k)}, G^{(k)})/∂A = 0, which is equivalent to the generalized Sylvester equation

\[
C_1 A + A C_2 = C_3
\]
where

\[
\begin{align*}
C_1 &= (M^T A_m^{-1} M)^{-1} \left((RM)^T A_m^{-1} RM + \mu I_p \right) \\
C_2 &= BS(BS)^T \\
C_3 &= (M^T A_m^{-1} M)^{-1} \\
& \quad \times \left((M^T A_m^{-1} Y_H (BS)^T + (RM)^T A_m^{-1} Y_M \\
& \quad + \mu \left(V^{(k)} + G^{(k)} \right) \right).
\end{align*}
\]

Equation (13) can be solved analytically by exploiting the properties of the circulant and downsampling matrices \(B \) and \(S \), as summarized in Algorithm 3 and demonstrated in [45]. Note that the matrix \(F \) represents the fast Fourier transform (FFT) operation, and its conjugate transpose (or Hermitian transpose) \(F^H \) represents the inverse FFT operation. The matrix \(D \in \mathbb{C}^{n \times n} \) is a diagonal matrix, which has eigenvalues of the matrix \(B \) in its diagonal line and can be rewritten as

\[
D = \begin{bmatrix}
D_1 & 0 & \cdots & 0 \\
0 & D_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & D_d
\end{bmatrix}
\]

where \(D_i \in \mathbb{C}^{m \times m} \). Thus, we have \(D_i H D = \sum_{i=1}^{d} D_i D_i \), where \(D_i = (1_d \otimes I_m) \). Similarly, the diagonal matrix \(\Lambda_c \) has eigenvalues of the matrix \(C_1 \) in its diagonal line (denoted \(\lambda_1, \ldots, \lambda_m \), and \(\lambda_i \geq 0, \forall \ i \)). The matrix \(Q \) contains eigenvectors of the matrix \(C_1 \) in its columns. The auxiliary matrix \(\bar{A} \in \mathbb{C}^{m \times n} \) is decomposed as \(\bar{A} = [a_1^T, a_2^T, \ldots, a_n^T]^T \).

2) Updating \(V \): The update of \(V \) can be made by simply computing the Euclidean projection of \(A^{(t,k+1)} - G^{(k)} \) onto the canonical simplex \(A \), which can be expressed as follows:

\[
\bar{V} = \arg \min_V \frac{\mu}{2} \left\| V - (A^{(t,k+1)} - G^{(k)}) \right\|_F^2 + \lambda A(V)
\]

where \(\Pi_A \) denotes the projection (in the sense of the Euclidean norm) onto the simplex \(A \). This classical projection problem has been widely studied and can be achieved by numerous methods [50]–[53]. In this paper, we adopt the popular strategy first proposed in [50] and summarized in Algorithm 4. Note that the above optimization is decoupled with respect to the columns of \(V \), denoted by \(V^{(1)}, \ldots, V^{(n)} \), which accelerates the projection dramatically.

Algorithm 4: Projection onto the Simplex \(A \)

Input: \(A^{(t,k+1)} - G^{(k)} \)

1. for \(i = 1 \) to \(n \) do
2. \((A - G)_i = i^{th} \) column of \(A^{(t,k+1)} - G^{(k)} \);
3. Sort \(A - G \) into \(y_i \geq \cdots \geq y_p \);
4. Set \(K := \max \{ k | \sum_{r=1}^{k} y_r - 1 / k < y_k \} \);
5. Set \(\tau := \sum_{r=1}^{K} y_r - 1 / K \);
6. Set \(\bar{V}_i := \max \{ (A - G)_i - \tau, 0 \} \);
7. end

Output: \(V^{(k+1)} = \bar{V} \)

In practice, the ASC constraint is sometimes criticized for not being able to account for every material in a pixel or due to endmember variability [26]. In this case, the sum-to-one constraint can be simply removed. Thus, the Algorithm 4 will degenerate to projecting \(A - G \) onto the nonnegative half-space, which simply consists of setting the negative values of \(A - G \) to zeros.

C. Optimization With Respect to the Endmember Matrix \(M \) (Fixed)

The minimization of (10) with respect to the abundance matrix \(M \) conditional on \(A \) can be formulated as

\[
\min_M L_1(M) + \lambda_M(M) \tag{14}
\]

where

\[
L_1(M) = \frac{1}{2} \left\| \Lambda_H^{-\frac{1}{2}} (Y_H - MA_H) \right\|_F^2 + \frac{1}{2} \left\| \Lambda_M^{-\frac{1}{2}} (Y_M - RMA) \right\|_F^2
\]
and $A_H = \text{ABS}$. By splitting the quadratic data fidelity term and the inequality constraints, the augmented Lagrangian for (15) can be expressed as

$$
\mathcal{L}(M, T, G) = L_1(M) + \iota_M \left(A_H^\frac{1}{2} T \right)
+ \frac{\mu}{2} \left \| A_H^{-\frac{1}{2}} M - T - G \right \|_F^2.
$$

The optimization of $\mathcal{L}(M, T, G)$ consists of updating M, T, and G iteratively as summarized in Algorithm 5 and detailed in the following. As $L_1(M)$ and $\iota_M(A_H^{1/2} T)$ are closed, proper and convex functions and $A_H^{1/2}$ has a full column rank, the ADMM is guaranteed to converge to a solution of problem (14).

Algorithm 5: ADMM sub-iterations to estimate M

| Input: $Y_M, Y_H, A_M, A_H, R, B, S, A, \mu > 0$ |
| for $k = 0$ to stopping rule do |
| /* Optimize w.r.t. M /* |
| $M^{(t,k+1)} \in \arg \min_M \mathcal{L}(M, T^{(k)}, G^{(k)});$ |
| /* Optimize w.r.t. T /* |
| $T^{(k+1)} = \Pi_T \left(A_H^{-\frac{1}{2}} M^{(t,k+1)} - G^{(k)} \right);$ |
| /* Update Dual Variable G /* |
| $G^{(k+1)} = G^{(k)} - \left(A_H^{-\frac{1}{2}} M^{(t,k+1)} - T^{(k+1)} \right);$ |
| end |
| Set $M^{(t+1)} = M^{(t,k+1)}$; |
| Output: $M^{(t+1)}$ |

1) **Updating M:** Forcing the derivative of (15) with respect to M to be zero leads to the following Sylvester equation:

$$
H_1 M + M H_2 = H_3
$$

where

$$
H_1 = A_H R^T A_M^{-1} R
$$

$$
H_2 = (A_H A_H^T + \mu I_p) (A A^T)^{-1}
$$

$$
H_3 = \left[Y_H A_H^T + A_H R^T A_M^{-1} Y_M A^T \right]
+ \mu \Lambda_H^{-2} \left(T + G \right) (A A^T)^{-1}.
$$

Note that $\text{vec}(A X B) = (B^T \otimes A) \text{vec}(X)$, where $\text{vec}(X)$ denotes the vectorization of the matrix X formed by stacking the columns of X into a single column vector, and \otimes denotes the Kronecker product [54]. Thus, vectorizing both sides of (16) leads to

$$
W \text{vec}(M) = \text{vec}(H_3)
$$

where $W = (I_p \otimes H_1 + H_2^T \otimes I_{m_A})$. Thus, $\text{vec} \left(\hat{M} \right) = W^{-1} \text{vec}(H_3)$. Note that W^{-1} can be computed and stored in advance instead of being computed in each iteration.

Alternatively, there exists a more efficient way to calculate the solution M analytically (avoiding to compute the inverse of the matrix W). Note that the matrices $H_1 \in \mathbb{R}^{m_A \times m_A}$ and $H_2 \in \mathbb{R}^{p \times p}$ are both the products of two symmetric positive definite matrices. According to [55, Lemma 1], H_1 and H_2 can be diagonalized by eigendecomposition, i.e., $H_1 = V_1 O_1 V_1^T$ and $H_2 = V_2 O_2 V_2^T$, where O_1 and O_2 are diagonal matrices denoted as

$$
O_1 = \text{diag} \{ s_1, \ldots, s_{m_A} \}
$$

$$
O_2 = \text{diag} \{ t_1, \ldots, t_p \}.
$$

Thus, (16) can be transformed to

$$
O_1 \hat{M} + O_2 \hat{M} = V_1^T H_1 V_2
$$

where $\hat{M} = V_1^T M V_2$. Straightforward computations lead to

$$
\hat{H} \circ \hat{M} = V_1^T H_3 V_2
$$

and \circ represents the Hadamard product, defined as the componentwise product of two matrices (having the same size). Then, M can be calculated by componentwise division of $V_1^T H_3 V_2$ and \hat{H}. Finally, M can be estimated as $\hat{M} = V_1^T M V_2^{-1}$. Note that the computational complexity of the latter strategy is of order $O(\max(m_A^3, p^3))$, which is lower than the complexity order $O((m_A p)^3))$ of solving (17).

2) **Updating T:** The optimization with respect to T can be transformed as

$$
\arg \min_T \frac{1}{2} \left \| T - A_H^{-\frac{1}{2}} M + G \right \|_F^2 + \iota_T(T)
$$

where $\iota_T(T) = \iota_M(A_H^{1/2} T)$. As $A_H^{(1/2)}$ is a diagonal matrix, the solution of (22) can be obtained easily by setting

$$
\hat{T} = A_H^{-\frac{1}{2}} \min \left(\max \left(M - A_H^{-\frac{1}{2}} G, 0 \right), 1 \right)
$$

where \min and \max are to be understood componentwise.

Remark: If the endmember signatures are fixed a priori, i.e., M is known, the unsupervised unmixing and fusion will degenerate to a supervised unmixing and fusion by simply not updating M. In this case, the alternating scheme is not necessary since Algorithm 1 reduces to Algorithm 2. Note that fixing M a priori transforms the nonconvex problem (10) into a convex one, which can be solved much more efficiently. The solution produced by the resulting algorithm is also guaranteed to be the global optimal point instead of a stationary point.

D. Parallelization

We remark that some of the most computationally intensive steps of the proposed algorithm can be easily parallelized on a parallel computation platform. More specifically, the estimation of A in Algorithm 3 can be parallelized in the frequency
domain due to the structure of blurring and downsampling matrices in the spectral domain. Projection onto the simplex \mathcal{A} can also be parallelized.

E. Relation With Some Similar Algorithms

At this point, we remark that there exist a number of joint fusion and unmixing algorithms that exhibit some similarity with ours, namely the methods in [15], [18], and [25]. Next, we state differences between those methods and ours. First of all, the degradation model used in [18] follows the pixel aggregation assumption. This assumption makes a block-by-block inversion possible (see [18, (18)]), which significantly reduces the computational complexity. However, due to the convolution (matrix B in (2)) plus downsampling (matrix S in (2)) model used in this paper, this simplification no longer applies. In [15] and [25], a degradation model and an optimization formulation similar to ours were used. The main difference is that both studies [15] and [25] minimize an approximate objective function to bypass the difficulty arising from the entanglement of spectral and spatial information contained in HS and MS images. More specifically, both studies minimize only the HS data term and ignore the MS one when updating the endmembers, and minimize only the MS data term and ignore the HS one when updating the abundances. On the contrary, in the proposed method, the exact objective function is minimized directly due to the available Sylvester equation solvers. Thus, both HS and MS images contribute to the estimation of endmembers and abundances.

V. EXPERIMENTAL RESULTS

Here, the proposed unmixing-based fusion method is applied to multiband images associated with both synthetic and semi-real data. All the algorithms have been implemented using MATLAB R2014A on a computer with Intel(R) Core(TM) i7-2600 CPU@3.40 GHz and 8 GB RAM. The MATLAB codes and all the simulation results are available in the first author’s homepage.\footnote{Note that some other fusion techniques (e.g., [12], [55], and [56]), which only deal with the fusion problem and do not consider the unmixing constraints, are not considered in this paper.}

A. Quality Metrics

1) Fusion Quality: To evaluate the quality of the fused image, we use the reconstruction signal-to-noise ratio (RSNR), the averaged spectral angle mapper (SAM), the universal image quality index (UIQI), the relative dimensionless global error in synthesis (ERGAS), and the degree of distortion (DD) as quantitative measures.

a) RSNR: The RSNR is defined as

$$\text{RSNR} (X, \hat{X}) = 10 \log_{10} \left(\frac{\|X\|_F^2}{\|X - \hat{X}\|_F^2} \right)$$

where X and \hat{X} denote the actual image and fused image, respectively. The larger RSNR, the better the fusion quality.

b) SAM: The SAM measures the spectral distortion between the actual and fused images. The SAM of two spectral vectors x_n and \hat{x}_n is defined as

$$\text{SAM} (x_n, \hat{x}_n) = \arccos \left(\frac{\langle x_n, \hat{x}_n \rangle}{\|x_n\|_2 \|\hat{x}_n\|_2} \right).$$

The overall SAM is obtained by averaging the SAMs computed from all image pixels. Note that the value of SAM is expressed in degrees and thus belongs to $[0, 180]$. The smaller the value of SAM, the less the spectral distortion.

c) UIQI: The UIQI is related to the correlation, luminance distortion, and contrast distortion of the estimated image with respect to the reference image. The UIQI between two single-band images $x = [x_1, x_2, \ldots, x_N]$ and $\hat{x} = [\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_N]$ is defined as

$$\text{UIQI} (x, \hat{x}) = \frac{4\sigma_x^2 \mu_x \mu_{\hat{x}}}{(\sigma_x^2 + \sigma_{\hat{x}}^2)(\mu_x^2 + \mu_{\hat{x}}^2)}$$

where $\mu_x, \mu_{\hat{x}}, \sigma_x^2, \sigma_{\hat{x}}^2$ are the sample means and variances of x and \hat{x}, and σ_x^2 is the sample covariance of (x, \hat{x}). The range of UIQI is $[-1, 1]$, and UIQI$(x, \hat{x}) = 1$ when $x = \hat{x}$. For multiband images, the overall UIQI can be computed by averaging the UIQI computed band by band.

d) ERGAS: The ERGAS calculates the amount of spectral distortion in the image. This measure of fusion quality is defined as

$$\text{ERGAS} = 100 \times \frac{m}{n} \sqrt{\frac{1}{m} \sum_{i=1}^{m} \frac{\text{RMSE}(i)}{\mu_i}}^2$$

where m/n is the ratio between the pixel sizes of the MS and HS images, μ_i is the mean of the ith band of the HS image, and m_i is the number of HS bands. The smaller ERGAS, the smaller the spectral distortion.

e) DD: The DD between two images X and \hat{X} is defined as

$$\text{DD}(X, \hat{X}) = \frac{1}{nm} \left\| \text{vec}(X) - \text{vec}(\hat{X}) \right\|_1$$

where vec represents the vectorization, and $\| \cdot \|_1$ represents the ℓ_1 norm. The smaller DD, the better the fusion.

2) Unmixing Quality: To analyze the quality of the unmixing results, we consider the normalized mean square error (NMSE) for both endmember and abundance matrices, i.e.,

$$\text{NMSE}_M = \frac{\|\hat{M} - M\|_F^2}{\|M\|_F^2}$$

$$\text{NMSE}_A = \frac{\|\hat{A} - A\|_F^2}{\|A\|_F^2}.$$
Here, the proposed FUMI method is applied to the synthetic data and is then compared with the joint unmixing and fusion methods investigated in [15], [21], and [25].

To simulate high-resolution HS images, natural spatial patterns have been used for abundance distributions as in [57]. There is one vector of abundance per pixel, i.e., \(\mathbf{A} \in \mathbb{R}^{p \times 100^2} \), for the considered image of size 100 \(\times \) 100 pixels in [57]. The reference endmembers, shown in Fig. 1, are \(m \) reflectance spectra selected randomly from the U.S. Geological Survey digital spectral library.\(^5\) Each reflectance spectrum consists of \(L = 221 \) spectral bands from 400 to 2508 nm. In this simulation, the number of endmembers is fixed to \(p = 9 \). The synthetic image is then generated by the product of endmembers and abundances, i.e., \(\mathbf{X} = \mathbf{MA} \). Considering the different distributions of abundances, five patterns in [57] have been used as the ground-truth abundances, and all the results in the following sections have been obtained by averaging these five patterns results.

1) HS and MS Image Fusion: Here, we consider the fusion of HS and MS images. The HS image \(\mathbf{Y_H} \) has been generated by applying a 11 \(\times \) 11 Gaussian filter (with zero mean and standard deviation \(\sigma_B = 1.7 \)) and then by downsampling every four pixels in both vertical and horizontal directions for each band of the reference image. A 4-band MS image \(\mathbf{Y_M} \) has been obtained by filtering \(\mathbf{X} \) with the LANDSAT-like reflectance spectral responses. The HS and MS images are both contaminated by zero-mean additive Gaussian noise. Considering that the methods in [15], [21], and [25] did not consider weighting the cost function with the noise covariance knowledge, we have added noise with identical power to all HS and MS bands to guarantee a fair comparison. The power of the noise \(\sigma^2 \) is set to \(\text{SNR} = 40 \text{ dB} \), where \(\text{SNR} = 10 \log(\|\mathbf{XBS}\|_F^2/m_\lambda m_\lambda^2) \).

Before comparing different methods, several implementation issues are explained in the following.

• Initialization: As shown in Algorithm 1, the proposed algorithm only requires the initialization of the endmember matrix \(\mathbf{M} \). Theoretically, any EEA can be used to initialize \(\mathbf{M} \). In this paper, we have used the vertex component analysis (VCA) method [38], which is a state-of-the-art method that does not require the presence of pure pixels in the image.

• Subspace Identification: For the endmember estimation, a popular strategy is to use subspace transformation as a preprocessing step, such as in [39] and [47]. In general, the subspace transformation is estimated \textit{a priori} from the high-spectral-resolution image, e.g., from the HS data. In this paper, the projection matrix denoted as \(\mathbf{E} \) has been learned by computing the singular value decomposition (SVD) of \(\mathbf{Y_H} \) and retaining the left-singular vectors associated with the largest eigenvalues. Then, the input HS data \(\mathbf{Y_H} \), the HS noise covariance matrix \(\mathbf{A_H} \), and the spectral response \(\mathbf{R} \) in Algorithm 1 are replaced with their projections onto the learned subspace as \(\mathbf{Y_H} \leftarrow \mathbf{E}^T \mathbf{Y_H}, \mathbf{A_H} \leftarrow \mathbf{E}^T \mathbf{A_H} \mathbf{E}, \text{and } \mathbf{R} \leftarrow \mathbf{R} \mathbf{E} \), where \(\mathbf{E} \in \mathbb{R}^{m_\lambda \times m_\lambda} \) is the estimated orthogonal basis using SVD and \(m_\lambda \ll m_\lambda \). Given that the formulation using the transformed entities is equivalent to the original one but the matrix dimension is now much smaller, the subspace transformation brings huge numerical advantage.

• Parameters in ADMM: The value of \(\mu \) adopted in all the experiments is fixed to the average of the noise power of HS and MS images, which is motivated by balancing the data term and regularization term. As ADMM is used to solve subproblems, it is not necessary to use complicated stopping rule to run ADMM exhaustively. Thus, the number of ADMM iterations has been fixed to 30. Experiments have demonstrated that varying these parameters do not affect much the convergence of the whole algorithm.

• Stopping rule: The stopping rule for Algorithm 1 is that the relative difference for the successive updates of the objective \(L(\mathbf{M}, \mathbf{A}) \) is less than \(10^{-4} \), i.e.,

\[
\left| \frac{L\left(\mathbf{M}^{(t+1)}, \mathbf{A}^{(t+1)}\right) - L\left(\mathbf{M}^{(t)}, \mathbf{A}^{(t)}\right)}{L\left(\mathbf{M}^{(t)}, \mathbf{A}^{(t)}\right)} \right| \leq 10^{-4}.
\]

• Parameter setting for compared algorithms: The original implementation of three state-of-the-art methods in [15], [21], and [25] was used as baseline. The respective parameters were tuned for best performance. For all the algorithms, we use the same initial endmembers and abundances. For [15] and [21], the threshold for the convergence condition of NMF was set at \(10^{-4} \) as the authors suggested.

The fusion and unmixing results using different methods are reported in Tables II and III, respectively. Both matrices \(\mathbf{A} \) and \(\mathbf{M} \) have been estimated. For fusion performance, the proposed FUMI method outperforms the other three methods, with a price of high time complexity. Berne’s method uses the least CPU time. Regarding unmixing, Lanaras method and FUMI perform similarly and are both much better than the other two methods.

Robustness to Endmember Initialization: As the joint fusion and unmixing problem is nonconvex, owing to the matrix factorization term, the initialization is crucial. An inappropriate initialization may induce a convergence to a point which is far

\(^5\)http://speclab.cr.usgs.gov/spectral.lib06/
from the desired endmembers and abundances. To illustrate this point, we have tested the proposed algorithm by initializing the endmembers \(M_0 \) using different EEAs, e.g., N-FINDR [58], VCA [38], and SVMAX [59]. The fusion and unmixing results with these different initializations have been given in Tables IV and V. With these popular initialization methods, the fusion and unmixing performances are quite similar and show the robustness of the proposed method.

2) HS and PAN Image Fusion: When the number of MS bands degrade to one, the fusion of HS and MS degenerates to HS pansharpening, which is a more challenging problem. In this experiment, the PAN image is obtained by averaging the first 50 bands of the reference image. The quantitative results for fusion and unmixing are summarized in Tables VI and VII, respectively. In terms of fusion performance, the proposed FUMI method outperforms the competitors for all the quality measures, using, however, the most CPU time, whereas Lanaras uses the least. Regarding the unmixing performance, Lanaras method and FUMI yield the best estimation result, outperforming the other two methods.

C. Semi-real Data

Here, we test the proposed FUMI algorithm on semi-real data sets, for which we have the real HS image as the reference image and have simulated the degraded images from the reference image.

In this experiment, the reference image is an HS image of size \(200 \times 100 \times 176 \) acquired over Moffett field, CA, in 1994 by the JPL/NASA airborne visible/infrared imaging spectrometer (AVIRIS). This image was initially composed of
224 bands that have been reduced to 176 bands after removing the water absorption bands. A composite color image of the scene of interest is shown in the top right of Fig. 2. As there is no ground truth for endmembers and abundances for the reference image, we have first unmixed this image (with any unsupervised unmixing method) and then reconstructed the reference image X with the estimated endmembers and abundances (after appropriate normalization). The number of endmembers has been fixed to $p = 5$.

1) HS and MS Image Fusion: The observed HS image has been generated by applying a 7×7 Gaussian filter with zero mean and standard deviation $\sigma_B = 1.7$ and by down-sampling every four pixels in both vertical and horizontal directions for each band of X, as done in Section V-B1. Then, a 4-band MS image Y_M has been obtained by filtering X with the LANDSAT-like reflectance spectral responses. The HS and MS images are both contaminated by additive Gaussian noise, whose SNRs are 40 dB for all the bands. The reference image X is to be reconstructed from the coregistered HS and MS images.

The proposed FUMI algorithm and other state-of-the-art methods have been implemented to fuse the two observed images and to unmix the HS image. The fusion results are shown in Fig. 2. Visually, FUMI give better fused images than the other methods. Furthermore, the quantitative fusion results reported in Table VIII are consistent with this conclusion as FUMI outperforms the other methods for all the fusion metrics. Regarding the computation time, FUMI costs more than the other three methods, mainly due to the alternating update of the endmembers and abundances and also the ADMM updates within the alternating updates.
The unmixed endmembers and abundance maps are displayed in Figs. 3 and 4, whereas quantitative unmixing results are reported in Table IX. For endmember estimation, compared with the estimation used for initialization, all the methods have improved the accuracy of endmembers. FUMI offers the best endmember and abundance estimation results. This gives evidence that the estimation of endmembers benefits from being updated jointly with abundances, due to the complementary spectral and spatial information contained in the HS and high-resolution MS images.

2) HS and PAN Image Fusion: Here, we test the proposed algorithm on HS and PAN image fusion. The PAN image is obtained by averaging the first 50 bands of the reference image plus Gaussian noise (SNR is 40 dB). Due to the space limitation, the corresponding quantitative fusion and unmixing results are reported in Tables X and XI, and the visual results have been omitted. These results are consistent with the analysis associated with the Moffet HS+MS data set. For fusion, FUMI outperforms the other methods with respect to all quality measures. In terms of unmixing, FUMI also outperforms the others for both endmember and abundance estimations, due to the alternating update of endmembers and abundances.

VI. CONCLUSION

This paper proposed a new algorithm based on spectral unmixing for fusing multiband images. Instead of solving the associated problem approximately by decoupling two data terms, an algorithm to directly minimize the associated objective function has been designed. In this algorithm, the endmembers and abundances were updated alternatively, both using an ADMM. The updates for abundances consisted of solving a Sylvester matrix equation and projecting onto a simplex. Due to the recently developed R-FUSE algorithm, this Sylvester equation was solved analytically and thus efficiently, requiring no iterative update. The endmember updating was divided into two steps: least squares regression and thresholding, which are both not computationally intensive. Numerical experiments showed that the proposed joint fusion and unmixing algorithm compared competitively with three state-of-the-art methods, with the advantage of improving the performance for both fusion and unmixing. Future work will consist of incorporating the spatial and spectral degradation into the estimation framework. Extending the proposed method to other feature- or decision-level fusion will also be relevant.
Qi Wei (S’13–M’15) was born in Shanxi, China, in 1989. He received the Bachelor’s degree in electrical engineering from Beihang University (formerly Beijing University of Aeronautics and Astronautics) in 2010 and the Ph.D. degree in signal and image processing from the Institut National Polytechnique de Toulouse (INP Toulouse), Toulouse, France, in 2015.

Since August 2015, he has been a Research Associate with the Signal Processing and Communications Laboratory, Department of Engineering, University of Cambridge, Cambridge, U.K. His research interests include inverse problems in image processing and computer vision, statistical inference, and optimization algorithms.

Dr. Wei received the Prix Léopold Escande from the University of Toulouse for his Ph.D. thesis Bayesian Fusion of Multi-band Images: A Powerful Tool for Super-resolution in 2015.

Nicholas Dobigeon (S’05–M’08–SM’13) was born in Angoulême, France, in 1981. He received the Engineering degree in electrical engineering and the M.Sc. degree in signal processing from the Institut National Polytechnique de Toulouse (INP Toulouse), University of Toulouse, Toulouse, France, both in 2004 and the Ph.D. degree and Habilitation Diriger des Recherches in signal processing from INP Toulouse in 2007 and 2012, respectively.

Since 2008, he has been with INP Toulouse, where he is currently an Associate Professor with the Institut de Recherche en Informatique de Toulouse (IRT), The National Institute of Electrical Engineering, Electronics, Computer Science, Fluid Mechanics & Telecommunications and Network (ENSEEIHT), INP Toulouse. His research interests include statistical signal and image processing, with a particular interest in Bayesian inverse problems with applications to remote sensing, biomedical imaging, and genomics.

Jean-Yves Tournére (SM’08) received the Ingénieur degree in electrical engineering and the Ph.D. degree from the Institut National Polytechnique de Toulouse (INP Toulouse), University of Toulouse, Toulouse, France, in 1989 and 1992, respectively.

He is currently a Professor with the Institut de Recherche en Informatique de Toulouse (IRT), The National Institute of Electrical Engineering, Electronics, Computer Science, Fluid Mechanics & Telecommunications and Network (ENSEEIHT), INP Toulouse. His research interests include statistical signal and image processing, with a particular interest in Bayesian and Markov-chain Monte Carlo methods.

Dr. Tournére has been involved in the organization of several conferences, such as the European Signal Processing Conference (EUSIPCO, program chair) in 2002, the IEEE International Conference on Acoustics, Speech and Signal Processing (plenaries) in 2006, IEEE Statistical Signal Processing Workshop (international liaisons) in 2012, the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP, local arrangements) in 2013, and the IEEE SSP (special sessions) and the IEEE International Workshop on Machine Learning for Signal Processing (special sessions) in 2014. He also served as the General Chair for the CMI Workshop on optimization and statistics in image processing held in Toulouse in 2013 (with F. Malgouyres and D. Kouamé) and for the IEEE CAMSAP in 2015. He served as an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING from 2008 to 2011 and for the EURASIP Journal on Signal Processing from 2013 up to present.

Marcus Chen received the B.S. degree in electrical and computer engineering from Carnegie Mellon University, Pittsburgh, PA, USA; the M.S. degree in electrical engineering from Stanford University, Stanford, CA, USA; and the Ph.D. degree from Stanford University, Stanford, CA, USA.

He is currently a Senior Member of Technical Staff with DSO National Laboratories, Singapore. His research interests include remote sensing, efficient learning of high dimensional data, and pattern recognition.

Simon Godsill (M’95) received the undergraduate and Ph.D. degrees from the University of Cambridge, Cambridge, U.K., while being a member of Sidney Sussex College, Cambridge, in 1990 and 1993, respectively.

He is currently a Professor of statistical signal processing with the Department of Engineering, Cambridge University, Cambridge, U.K. He is also a Professorial Fellow and a Tutor with Corpus Christi College Cambridge, Cambridge. He coordinates an active research group in signal inference and its applications within the Signal Processing and Communications Laboratory, University of Cambridge, specializing in Bayesian computational methodology, multiple object tracking, audio and music processing, and financial time series modeling. A particular methodological theme over recent years has been the development of novel techniques for optimal Bayesian filtering and smoothing, using sequential Monte Carlo or particle filtering methods. He has authored extensively in journals, books, and international conference proceedings, and has given a number of high profile invited and plenary addresses at conferences.