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ABSTRACT

This paper studies a new Bayesian algorithm for fusing rsmeso-
tral and multispectral images. The observed images aredtiathe
high spatial resolution hyperspectral image to be recavérough
physical degradations, e.g., spatial and spectral blyiaird/or sub-
sampling defined by the sensor characteristics. In this yweekas-
sume that the spectral response of the multispectral sessor-
known as it may not be available in practical applicationbe Te-
sulting fusion problem is formulated within a Bayesian rstiion
framework, which is very convenient to model the uncertaiet-
garding the multispectral sensor characteristics anddaeesto be
estimated. The high spatial resolution hyperspectral éisthen in-
ferred from its posterior distribution. More preciselycmmpute the
Bayesian estimators associated with this posterior, a Mackain
Monte Carlo algorithm is proposed to generate samples asymp
ically distributed according to the distribution of intete Simula-
tion results demonstrate the efficiency of the proposeafusiethod
when compared with several state-of-the-art fusion tepres.

problem. Since the fusion problem is ill-posed, Bayesidarance
offers a convenient way to regularize the problem by defirdng
appropriate prior distribution for the scene of interesblldwing
this strategy, Hardiet al. proposed a Bayesian estimator for fus-
ing the co-registered high spatial-resolution MS and higéctral-
resolution HS images [9]. The estimator of [9] was implersent
by Zhanget al. in the wavelet domain to improve denoising per-
formance [10]. More recently, a hierarchical Bayesian nhos
proposed in [11, 12] to solve the fusion problem. The Bayest:
timators associated with this model were computed from $ssnp
generated from the target posterior distribution usingkdarchain
Monte Carlo methods. However, the spectral and spatiabsens
sponses were assumed to be fully known in [11] and were exrploi
to properly design the spatial and spectral degradatidastafg the
image to be recovered (see [13] for more details about thegmd
dations). In practice, the spectral relation between HSM8dm-
ages is not always available as the corresponding speesabnses
highly rely on the sensors.

In this work, we propose to estimate the spectral respongeof

Index Terms— Fusion, multispectral and hyperspectral images,MS sensor jointly with the unknown image to be recovered,-gen

spectral response, Bayesian estimation, Hamiltonian &Gxairlo.

1. INTRODUCTION

Multi-resolution image fusion, also known as super-resofy has
been a very active research topic during recent years [1]rofop
typal fusion task for remote sensing images is the panshege
which generally consists of fusing a high spatial resolupanchro-
matic (PAN) image and a low spatial resolution multispdafivés)
image. More recently, hyperspectral (HS) imaging, whichsists
of acquiring a same scene in several hundreds of contigymcs s
tral bands, has opened a new range of relevant applicasonk,as
target detection [2] and spectral unmixing [3]. Naturatitytake ad-
vantage of the newest benefits offered by HS images, thegrobf
fusing HS and PAN images has been explored [4]. Capitalining

decades of experience in MS pansharpening, several HS gggash

ening approaches merely adapt existing algorithms for PANNAS
fusion [5]. Other methods are specifically designed to thepals
sharpening problem such as [6]. Conversely, the fusion ofad®
HS images has been considered in fewer research works aiitids s
challenging problem because of the high dimensionalitjhefdata
to be processed. The fusion of MS and HS differs from traditio
MS or HS pansharpening since both spatial and spectrahiaion
is contained in multi-band images. Therefore, a lot of parysén-
ing methods, such as component substitution [7] and relapectral
contribution [8] are inapplicable or inefficient for the H$ fusion
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eralizing the approach of [11]. Exploiting the intrinsiaréénsion
of the data to be recovered, the MS characteristics are ssgue
in a lower-dimensional subspace, significantly reducirgydifficul-
ties inherent to the resulting blind deconvolution probleBased
on the posterior distribution of the unknown parameters,pne
pose to compute the MMSE estimators of the unknown scene and a
so-called pseudo-spectral response by using samplesatetdry a
hybrid Gibbs sampler. This sampler includes a Hamiltoniaonié
Carlo (HMC) step. The HMC algorithm differs from the stardiar
Metropolis-within-Gibbs algorithm by exploiting Hamiléan evo-
lution dynamics to propose states in a high-dimensionatespath
higher acceptance ratio, reducing the correlation betwaeoessive
samples and thus speeding up the sampler convergence.

The paper is organized as follows. Section 2 formulatesuhe f
sion problem in a Bayesian framework. In Section 3, we prefos
new hierarchical Bayesian model defined by the joint postetis-
tribution of the unknown image, its hyperparameters, theugde-
spectral response and the noise variances. Section 4stubigrid
Gibbs sampler based on an HMC method to sample the targét join
posterior distribution of interest. Simulation resulte aresented in
Section 5 whereas conclusions are reported in Section 6.

2. PROBLEM FORMULATION

In this paper, we consider the problem of fusing HS and MS &sag

As mentioned before, the HS imad8; is supposed to be a blurred,

down-sampled and noisy version of the target imXgehereas the

MS imageY v is a spectrally degraded and noisy versiorXofAs

a consequence, the observation models associated withStent

MS images can be written as [9, 14, 15]
Yu =XBS+ Ny

@)
Yu =RX+Ny



whereX = [z1, -, z,] € R™»*" is the unknown full resolution
HS image composed ofi, bands and: pixels, Yy € R™ <™
is the HS image composed of, bands andn pixels andYy €
R™**" is the MS image composed af, bands and: pixels. In (2),

s* = {s7,s2,}. The appropriate prior distributions assigned to

these parameters are presented below.

Scene prior. Gaussian prior distributions are assigned to the pro-

B € R"*" is a cyclic convolution operator acting on the bands thatjected vectorsu; (i = 1,--- ,n) that are assumed to be a priori

models the point spread function of the HS sensor $inel R™*™

is a downsampling matrix (with downsampling factor denaied).
ConverselyR € R™*™ models the spectral response of the MS
sensor, which is assumed to be unknown. The noise maiNges
R™*™ andNy € R™*™ are assumed to be distributed according
to the following matrix Gaussian distributions [16]

Nu NMNmA,m(OmA,m,S%mA,lm) (2)
Nl\/[ NMNn)\,n(On)\,nysgnln)\7ln)

where0,; is thea x b matrix of zeros and., is the-\ x - iden-
tity matrix. Note that the white Gaussian noise assumpioguite
popular in image processing [17, 18] as it facilitates thenidation
of the likelihood. However, the proposed work could be edezhto
handle colored noise, in particular to cope with spectredisrelated
noise. The problem addressed in this work consists of estima
the high-spatial resolution HS imag@é from the two available im-

independent, i.e.,

U; |/J'ui7 Bu, N (l"’ui ) Eui) (5)
wherep,, . are fixed using the interpolated HS image in the subspace
of interest following the strategy in [9] ar.,; are unknown hyper-
parameters. To reduce the number of parameters to be estimat
Y., are assumed to be identical, i.E,, =--- = X,, = Z4.

The Gaussian prior has been used successfully in many image
processing applications including image denoising [2@] anage
restoration [21]. Moreover, it has the advantage of beingrgugate
distribution relative to the likelihood function, leadirtg simple
computations of the Bayesian estimators derived from ttstepior
distribution of interest.

agesYn andY i, using the observation model (2) when the spectralPseudo-spectral response prior A matrix Gaussian prior is cho-
response matriR is unknown. The proposed estimation scheme resen forR, i.e.,p (R|R, 0% ) = MN o, iy (R, 0& s, Ly ). 1N

lies on a hierarchical Bayesian model introduced in Se@&ion

3. HIERARCHICAL BAYESIAN MODEL

3.1. Reformulation in a lower-dimensional subspace

Because the HS bands are spectrally correlated, the HSrvecto
usually lives in a space whose dimension is much smaller than
[19]. This property has been extensively exploited whenyairag
HS data, in particular to perform spectral unmixing [3]. Mare-
cisely, the HS image can be rewritten s = VU whereV ¢
R™>*™x has normalized orthogonal columns adde R™**™ is

absence of additional knowledge, the mean respBugeset to the
zero matrix andrg is setto a large value to ensure a non-informative
prior for R.

Noise variance priors A non-informative Jeffreys’ prior is assigned
H H 2 2 1 2
to the noise variances, ands;,, i.e., f (si) o ;glw (s7) and

f(2 2

sm) o —-1g+ (sh,), Wherelg+ () is the indicator function
defined onR ™ (see [22] for motivations).

the projection ofX onto the subspace spanned by the columns of8.3. Hyperparameter priors

V. Incorporating this decomposition of the HS imaKeinto the
observation model (2) leads to
Yu = VUBS + Ny
Yu = RU+ Ny

whereR £ RV is the so-calleghseudo-spectral response of the MS
sensor. Sinc& is a full-column rank matrix, the rows & span
the spac&®™***, which implies that the rows dk = RV also live

in R™ > Thus, without loss of generality, the estimation of the
full spectral respons®. can be substituted by the estimation of the
pseudo-respondﬁ, which significantly decreases the computational
complexity of the fusion algorithm sing&, < m.. In this work,
we assume that the signal subspace denotegsas{V} has been
previously identified, e.g., obtained from available a primowl-
edge regarding the scene of interest, or after conductirminaipal

(©)

The hyperparameter vector associated with the parameimrs pr
defined above i® = {X.}. The quality of the fusion algorithm
investigated in this paper clearly depends on the valueishtyper-
parameter. Instead of fixing the hyperparameter a prioriprepose
to estimate it from the data by defining a hierarchical Baymesi
model. This approach requires to define prior for the thisehya-
rameter (usually referred to as hyperprior) which is dethbbelow.

Hyperparameter X,,: Assigning a conjugate inverse-Wishart (IW)
distribution to the covariance matr®,, has provided interesting re-
sults in the signal/image processing literature [23]. ¢wihg these
works, an IW distributior®,, ~ ZW (¥, n) has been chosen, where
the parameters®,7)” are fixed to provide a non-informative prior
for X,,.

component analysis (PCA) of the HS data. Then, the congldere

fusion problem is solved in this lower-dimensional subspay es-
timating the projected imade and the pseudo-spectral respoise

3.2. Likelihood and prior distributions

Using the statistical properties of the matri®ég andNy,, the dis-
tributions of Yy andY\; are matrix Gaussian distributions, i.e.,

YH ~ MNm/\,m(VUBS, Sil’ﬁbm lm)7 (4)
Yur ~ MN oy 2 (RVU, 8215, ,10).

3.4. Posterior distribution

The unknown parameter vect@rassociated with the proposed hier-
archical Bayesian fusion model is composed of the projestete
U, the pseudo-spectral resporﬁeand the noise variances, i.e.,

0 = {U,f{, sz}. Definingy = {Ywu, Yu} the set of the ob-
served images, the joint posterior distribution of the wwmn pa-

rameters and hyperparameters can be computed using thifudl
hierarchical structure

The unknown parameters to be estimated are the projected sce

U, the pseudo-spectral resporﬁeand the vector of noise variances

f(0,2Y) o f(VI0) f(0|®) f(®) (6)



where the parameter and hyperparameter priors are given by where||.|| is the Frobenius norm an@ does not depend olJ.
_ ) ) Note that the vector obtained by vectorizihfjhas a Gaussian dis-

F(01®) =f(USa)f(R)f (1) f (sm) (7)  tribution. However, f(U|Z.,, R, s2,)) is not the PDF of a ma-

f(@)  =f(Z.). trix normal distribution. Therefore, samplifg directly from its
conditional distribution would be computationally intérgs since
it would require the inversion of large matrices. In this @ae
propose to use an HMC method to generate matrices distrilaute
cording to the conditional distribution &f. More details about the
proposed HMC method are available in [11] and are omitted feer
space limitations.

Computing the posterior distribution of the projected sc£(U|Y)
requires to marginalize out the parametdps R and s*> from
the joint posterior. As this marginalization is clearly ressy to
perform, computing the MMSE and MAP estimators of the pro-
jected scendJ analytically from the posterior (6) is difficult. In-
stead, this paper proposes to generate a collectia¥ief samples
{(0,(1»)(1), . (0,<I>)<NMC)} that are asymptotically distributed 4 4. Sampling the noise variance vectas?
according to the posterior of interest (6). The Bayesiaimest . o . . 5
tors of the parameters of interest can then be computed usin@he conditional distributions of the noise varianegsand s, are
these generated samples. For instance, the MMSE estimgtor B'€ following inverse-gamma (IG) distributions

U can be approximated by an emplncal average of the generated s} |2u, U, R, Y ~ IG (”W” W%‘Q"b)
samplesUnivise ~ gz i, 11 U, where Ny is the ey [ ¥n—RU|2

number of burn-in |terat|ons required to reach the sampever- S| T, U, R,Y ~1G < 2 )
gence. The hlghly resolved HS image can finally be compugsed a
Xamse = VUnuse. In order to sample according to the joint

posterior f (6, ®|Y), we propose to design a Metropolis-within- 5 SIMULATION RESULTS
Gibbs sampler whose main steps are described in the neidrsect

that are easy to sample.

This section presents numerical results obtained with tbpgsed
4. HYBRID GIBBS SAMPLER Bayesian fusion algorithm. The reference image, consitibere
as the high spatial and high spectral resolution image toebe r
The Gibbs sampler has received much attention in the stafist covered, is an HS image acquired over Moffett field, CA, in499
community to solve Bayesian estimation problems [24]. Tlenm by the JPL/NASA airborne visible/infrared imaging spentsier
idea of this MCMC method is to sample according to the coodétl  (AVIRIS) [25]. This image is of sizel28 x 64 and was initially
distributions of the target distribution (see [24] for mdegtails). The composed o224 bands that have been reducedl@ bands after
sampler is defined by &step procedure detailed below. removing the water vapor absorption bands. A compositercolo

] ) ) ) image of the scene of interest is shown in the bottom right@f E
4.1. Sampling the covariance matrix of the imagez,,

Standard computations yield the following inverse-Wiskigstribu- ~ 5.1. Simulation scenario

tion as conditional distribution for the covariance maf¥iy We propose to reconstruct the reference HS imsigigom two HS

¥.|U,R, 2 Y ~ and MS image¥'u andY . First, a high-spectral and low-spatial
n resolution imagéY'n has been generated by applying & 5 aver-
W <\I; 4 Z(“i _ uu‘)T(ui —py )n+ 77) (8) aging filter and by down-sampling evetypixels in both vertical and
- ‘ ‘ horizontal direction for each band of the reference imageco8d,
a 7-band MS imagéY'm has been obtained by filterifi§ with the
LANDSAT reflectance spectral responses [26].
The HS and MS images have been both contaminated by zero-

which is easy to sample.

4.2. Sampling the pseudo-spectral response matriR mean additive Gaussian noises with signal to noise ratidReSN
~ IXBS|%) _ _ IRXI% ) _
The conditional PDF oR. can be computed using the likelihood (4) 101og ( IINHII%F) = 30dB and SNRy = 10log (HNMHg) -

and the prior defined in Section 3.2. We obt&fX,,, U,s2,y ~  30dB. The observed HS and MS images are shown in the top left

MN oy s (g, Iny, Sg) With and right of Fig. 1. Note that the HS image has been interpdHatr
A ATRITEAY . better visualization and that the MS image has been disglaging
By = ( YuU" + TR) g an arbitrary color composition. In order to learn the procma-

trix V, we have computed th&, = 10 most discriminant vectors
(associated with the 10 largest eigenvalues of the samplaience
matrix) of the HS image. These 10 vectors correspond to 98960
the information contained in the HS image.

—1
Eﬁ: (éUUT élﬁl)\)

which can be sampled easily. Note in particular that the imatr
g € R™ *™x can be computed easily since it has a small size

(mA is generally smaller than 10). .
5.2. Hyperparameter Selection

4.3. Sampling the projected imagdUJ As presented in Section 3, some prior parameters are fixeghterg

Choosing the prior distribution for the projected imddgealefined in ate a non-informative prior as detailed below:

Section 3.2 leads to the conditional log-posterior distitm o 0% is ethual to10® to provide a non-informative prior for the
spectral response.
—log f(U|Zw, R, 52, L 'Yr — VUBS|%+ o A . .
g /(U] V) =3 257 H H I e W s fixed to the identical matrix anglis fixed to bem + 3
232 Yy — RU”F 4+ 1 Z( — )2 (w — py, )+ C to ensure a non-informative prior f&.,.



Fig. 1. Fusion results. (Top left) HS image. (Top right) MS image.
(Row 2 left) MAP estimator [9]. (Row 2 middle) Wavelet MAP est
mator [10]. (Row 2 right) MMSE estimator with knowlR. (Bottom
left) MMSE estimator withR+noise. (Bottom middle) Proposed
method. (Bottom right) Reference image.

5.3. Fusion performance

To evaluate the quality of the proposed fusion strateggetiimage
quality measures have been investigated. Referring tq yi®Jpro-
pose to use the reconstruction SNR (RSNR), the averagedrapec
angle mapper (SAM) and the universal image quality indexQIyI
as quantitative measures. The RSNR is related to the Eadide
distance between the actual and fused images RENK) =

X3 .
10log;, (“)L;J;’“%). The larger RSNR, the better the fusion. The

definition of SAM and UIQI can be found in [10]. The smaller
SAM, the better the fusion and the larger UIQI, the bettefftis@on.

Fig. 2. True pseudo-spectral resporﬁe(left) and its estimation
(right).

Table 1. Performance of the fusion methods: RSNR (in dB), UIQI
and SAM (in degree).

Methods RSNR| UIQI | SAM
Hardie [9] 23.32 | 0.9913| 5.06
Zhang [10] 25.42 | 0.9955| 4.03

MCMC with exactR [11] | 26.57 | 0.9965| 3.47
MCMC with noisyR. 25.93 | 0.9957 | 3.59
MCMC with unknownR | 26.56 | 0.9965| 3.46

that can be employed with an exact knowledgeRof Results ob-
tained with the different algorithms are depicted in FigThe pro-
posed algorithm performs competitively with the other noelthfor
MS and HS fusion. Quantitative results reported in Table teims

of RSNR, SAM and UIQI show that the proposed method provides
better results than the methods of [9], [10] and similar @enance
when compared to the oracle method [11]. Table 1 also shaats th
the performance of the oracle method [11] degrades heavignw
using a spectral response with some uncertainty (obtaipedding
noise with variance defined byl01log,, (||R/|% /o) = 10dB).

An advantage of the proposed method is that it allows thedmseu
spectral response of the MS sen$oto be estimated. Fig. 2 shows
that the resulting estimateR is in good agreement with the true
pseudo-spectral response (obtained by multiplying thetsgere-
sponse of the LANDSAT satellite [26] by the mat& defined in
Section 5.1). Note that the original spectral respdRsis not easy

to be estimated frorR since the matri®’ is not invertible.

6. CONCLUSION

This paper proposed a new hierarchical Bayesian model &futh
sion of multispectral and hyperspectral images when thetsgee-
sponse of the multispectral sensor is unknown. The imagesto b
recovered was assumed to be degraded by physical transionsna
included within a forward model. We introduced an apprdpraior
distribution for the high spatial and high spectral resolutmage to
be recovered defined in a lower-dimensional subspace. Hutre
ing posterior distribution was sampled using a hybrid Gibam-
pler. The particularity of this sampler is to involve a Hatmilian
Monte Carlo step for sampling the unknown image, which is pro
jected onto a low dimensional subspace defined by the matongec

The experiments compare the proposed hierarchical Bayesiaof a principal component analysis of the hyperspectral Endgu-

method with three state-of-the-art fusion algorithms fd8 &hd HS
images [9-11]. Note that the Bayesian method of [11] mairity d
fers from the proposed strategy in that the spectral reggBneas
perfectly known in [11] while it is estimated in this work. Gge-
quently, the algorithm of [11] can be considered as an oraefhod

merical experiments showed that the proposed method ces fear
vorably with other state-of-the-art methods, with the adsge of
jointly estimating the spectral response of the multispécensor.
Future work will consist of comparing the proposed methothwi
other non-Bayesian methods, such as [27-30].
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