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ABSTRACT
Bayesian Prior Source Separation (BPSS) with positivity
constraint is a useful unsupervised approach for hyperspec-
tral data unmixing. The main interest of this approach is to
ensure the positivity of the unmixed component spectra and
abundances. Moreover, a recent extension has been proposed
to impose the sum-to-one (full additivity) constraint to the
estimated abundances. Unfortunately, even if positivity and
full additivity are two necessary properties to get physically
interpretable results, the use of BPSS algorithms is limited by
high computation time and large memory requirements since
these Bayesian algorithms employ Markov Chain Monte
Carlo methods. This article introduces an implementation
strategy which allows one to apply such algorithms to a full
hyperspectral image, as typical in Earth and Planetary Sci-
ence, with reduced computation cost. We studied a technical
optimization. We also study the effect of convex hull pixel
selection as a preprocessing step and discuss the impact of
such preprocessing on the relevance of the estimated com-
ponent spectra and abundance maps as well as on the whole
computation times. For that purpose, we use two different
datasets: a synthetic one and a real hyperspectral image from
Mars.

Index Terms— Hyperspectral imaging, source separa-
tion, Bayesian estimation, implementation strategy, computa-
tion time.

1. INTRODUCTION

In hyperspectral imaging, each image recorded by the sensor
is the solar light reflected and diffused back from the observed
planet surface and atmosphere at a particular spectral band.
Under some assumptions related to surface and atmosphere
properties - i.e.: lambertian surface, no intimate mixture, no
diffusion terms in the atmosphere, homogeneous geometry in
the scene - each measured spectrum (each pixel of the ob-
served images for several spectral bands) can be modeled as a
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linear mixture of the scene component (endmembers) spectra
[1]. In this model, the weight of each component spectrum
can be linked to its abundance in the surface area correspond-
ing to the underlying pixel.

By considering P pixels of an hyperspectral image ac-
quired at L frequency bands, the observed spectra are gath-
ered in a P × L data matrix X. Each row of this matrix
contains a measured spectrum at a pixel with spatial index
p = 1, . . . , P . According to the linear mixing model, the pth
spectrum can be expressed as a linear combination of the R
pure spectra of the surface components. Using matrix nota-
tions, this linear spectral mixing model can be written as

X ≈ AS (1)

The rows of matrix S contain the surface pure spectra of
the R components and each element Apr of matrix A corre-
sponds to the abundance of the rth component in pixel with
spatial index p. The source separation problem consists of
finding matrices S and A [2].

When solving this separation problem with hyperspectral
data, several constraints can be considered to reduce the set
of the admissible solutions. A first hard constraint is the pos-
itivity (or non-negativity) of the elements of both matrices S
and A since they correspond to pure spectra and abundances
of the surface components. A second constraint that may be
imposed is the sum-to-one (additivity) constraint of the abun-
dances. Indeed the abundance weights correspond to propor-
tions and therefore should sum to unity. This constrained sep-
aration problem can be conveniently addressed in a Bayesian
framework. Two algorithms that perform unsupervised sepa-
ration under positivity and sum-to-unity constraints have been
recently proposed [3, 4]. The complexity of the inference
from the posterior distribution of the parameters of interest
is tackled using Markov Chain Monte Carlo methods. The
computation time drastically increases with the image size
and these algorithms have been not applied for large image
processing in spite of their high effectiveness.

The aim of this article is to discuss some implementation



strategies which allow to apply these algorithms even if im-
age sizes are large. Previous work about blind source separa-
tion of hyperspectral images have been done [5, 6, 7] but only
few using positivity/sum-to-unity constraints [8]. A previous
proposal [8] is to combine independent component analysis
(ICA) and Bayesian positive source separation (BPSS). This
strategy presents a limitation related to the difficulty to deter-
mine the number of pixels to retain from each independent
component class. In this paper, we investigate another pixel
selection strategy based on the computation of the convex hull
of the hyperspectral data and discuss its influence on the sep-
aration performances. The discussion about the estimation of
the number of sources, or “intrinsic dimension” [9], will not
be addressed in this article.

2. OPTIMIZATION

The optimization consists of two independent parts: (i) Tech-
nical Optimization (TO) to reduce the memory footprint, the
average cost of algorithmic operations, and make smarter
reuse of memory (ii) Convex Hull Optimization (CHO) to
reduce the number of spectra to consider.

Both parts enabled us to analyze images that so far where
not open to analysis. The authors stress that the techniques
applied in (i) do not alter the results of the original algorithm.
On the other hand, the optimization strategy (ii) only selects a
subset of the original input and therefore has the potential to
significantly change the results. We therefore need to evaluate
the kind of impact of the strategy (ii).

2.1. Technical Optimization (TO)

So far, the algorithms introduced in [3, 4] and referred to
as BPSS and BPSS2, respectively, could be successfully
launched on an image of a restricted size, typically of a few
thousand pixels. The main goal of this work is to optimize
these algorithms to process a whole hyperspectral image of
100 000 spectra as it typically occurs in Earth and Planetary
Science. Since the time requirements of the computation
increase drastically with a larger number of of pixels in an
image, another challenging objective is to reduce as much as
possible the computing time, using all possible ways. This
algorithm has been implemented in MATLAB c©.

Memory: Fragmentation of memory may occur when
variables are resized after the allocation. In this case, the
memory management might not be able to allocate a chunk
of memory that is large enough to hold the new variable. In
our case, to reduce the impact of garbage collection, we found
it useful to pre-allocate the matrices.

Precision: MATLAB c© by default computes on double
precision but the computation with single saves a lot of com-
putation time while providing sufficient arithmetic precision.
Furthermore, most datasets come as single precision.

OS Architecture: It is interesting to know that MATLAB c©
is limited in terms of using of the memory use depending on

the Operating System (OS) and the MATLAB c© version.
Parallelization: MATLAB c© contains libraries to auto-

matically parallelize parts of the algorithms on a single com-
puter. We choose to run BPSS on a 4-core machine. The un-
derlying matrix libraries already provide a certain level of par-
allelism depending on the number of available cores. How-
ever, in the future, parts of the code could be parallelized and
the jobs could be submitted to a grid in order to speed up the
process.

2.2. Convex Hull Optimization (CHO)

The proposed pixel selection strategy is based on the convex
hull of the data matrix projection into the subspace defined
by the seven first principal components. The convex hull of a
point set is the smallest convex set that includes all the points
[10]. It can be used as an concise description of these point
feature. Consequently, the corresponding pixels in the hyper-
spectral images contain all the component spectra while some
of them contain a high abundance of the components.

3. PERFORMANCE AND ACCURACY
3.1. Performance

The overall performance of TO are better compared to the
original version of the BPSS algorithm.We estimated to win
up to 60 % computation time on a x86 processor architecture.
BPSS memory consumption is also significantly reduced in
order to be performed on a typical hyperspectral image of 100
000 spectra and 128 wavelength. We estimate that the CHO
reduce the computation time by a factor of 50 times.

3.2. Accuracy

The results of TO is found to be equivalent to the original
code within numerical precision. One have to better choose
the TO optimized version in order to save resources.

The effect of the CHO can lead a significant bias in ac-
curacy. We studied both synthetic and real data in order to
estimated the bias.

3.2.1. Synthetic datasets

Several synthetic datasets have been generated by mixing 3,
5 or 10 endmembers, with randomly distributed abundances
with uniform distribution. The generated datasets are of size
200x500 pixels similar to a typical hyperspectral image.The
following spectra have been used as endmembers: H2O ice
and CO2 ice spectra [11, 12] and mineral spectra from the
USGS Digital Spectral Library splib06a [13], resampled to
the 128 wavelengths of OMEGA C Channel [14]. To ensure
the sum-to-one constraint on the n endmember abundances, a
uniform distribution on the n-simplex has been used.

Based on this method, datasets for which the maximum
abundance of each single endmember was limited to a cer-
tain value (100%, 80% and 60%) have also been considered.
This latter data, that are called ’cutoff’, allows one to test the



method efficiency in front of various conditions in terms of
purity of the samples (in cases where pure components occur
in the dataset or not).

In addition, a 3 components asymmetric dataset was in-
vestigated, with the abundances of one component (albite)
being limited to a cutoff of 35% and the abundance of the
two others (ices) not being limited. Note that for all the con-
sidered simulation scenarii, the number of sources to be es-
timated has been tuned to the actual number of endmembers
used to produce the artificial dataset.

Due to curse of dimensionality, the more endmembers to
be estimated with the fixed number of wavelength, the more
difficult is the estimation. Still, BPSS2 gives excellent results
for 10 sources, as all spectra are estimated with a correlation
coefficient higher than 99% (see fig. 1).

In most of the tested cases, the quality of the estimation is
unambiguously better with BPSS2 than with BPSS.

The cutoff affects the quality of the estimation, which is
clearly better, for BPSS and BPSS2, when pure components
occur in the dataset.

Our results clearly show that the method is very robust
to noise. BPSS2 (without pixel selection) even manages to
successfully overcome the addition of a 100-times amplified
OMEGA-like noise.

For a cutoff from 80% to 60%, the source estimation of
BPSS and BPSS2, after the convex hull selection, is signifi-
cantly lower than without convex hull.

In case of an asymmetry in the cutoff, the results are bet-
ter with pixel selection rather than without. BPSS2 with pixel
selection is the only run (performed on this synthetic dataset)
that allows to successfully estimate the 3 endmembers used
to produce the dataset, including albite, whose abundances
were limited to a cutoff of 35% and whose spectral signature
is weaker than the one of the two other endmembers (ices).
This result can be explained by the fact that pixel selection
is able to extract the pixels with the strongest available albite
signature, and consequently overcome the blinding effect of
the ices occurring in the whole dataset, that affected the re-
sults when no pixel selection was performed.

3.2.2. OMEGA image

OMEGA [14] is a imaging spectrometer onboard Mars Ex-
press. We propose to study a reference image of the south
polar cap of Mars 1.

When the convex hull selection is used as a pre-processing
step to BPSS, the estimation is significantly better (see fig.
2 and 3). This results show that pixel selection is a way to
reponderate the occurrence of rare endmember and thus is a
interesting method to provide better results.

1http://sites.google.com/site/fredericschmidtplanets/Home/hyperspectral-
reference

Fig. 1. Sources estimated by BPSS2 (blue lines) and their
spectral matches (red dotted lines), for an artificial dataset
with 10 endmembers (no cutoff, no noise).

Fig. 2. Estimation of 3 sources of the entire OMEGA image
41 1 with BPSS using a preprocessing step of pixel selection
using the convex hull method. The first and third source are
clearly identified to CO2 and H2O ices with a correlation co-
efficient of 0.953 and 0.940. The spatial abundances are well
estimated regarding the WAVANGLET classification method
[12, 8]. The second source is identified to dust with a lower
correlation coefficient (0.372).

4. CONCLUSION

We propose an optimization of bayesian algorithm to study
actual hyperspecral image and show that the technical opti-
mization is equivalent and faster than the original algorithms.
We also show that pixel selection, using convex hull, decrease
the accuracy of the estimation for cutoff from 80% to 60%.
Nevertheless, pixel selection increase the accuracy of the es-
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Fig. 3. Estimation of 3 sources of the entire OMEGA im-
age 41 1 with BPSS without pixel selection. The second
source is clearly identified to CO2 ice with a correlation co-
efficient of 0.957. The first and third sources are identified to
dust and water ice with lower correlation coefficients of 0.555
and 0.773. The spatial abundances of water ice is not well
estimated regarding the WAVANGLET classification method
[12].

timation when the sources are distributed with asymmetry, as
suggested on results of both synthetic and real hyperspectral
image.
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