
BAYESIAN SEGMENTATION OF CHEST TUMORS IN PET SCANS
USING A POISSON-GAMMA MIXTURE MODEL

Zacharie Irace, Marcelo Pereyra, Nicolas Dobigeon and Hadj Batatia

University of Toulouse, IRIT/INP-ENSEEIHT, 31071 Toulouse Cedex 7, France
{zacharie.irace, marcelo.pereyra, nicolas.dobigeon, hadj.batatia}@enseeiht.fr

ABSTRACT

This paper presents a Bayesian algorithm for PET image seg-
mentation. The proposed method, which is derived from PET
physics, models tissue activity using a mixture of Poisson-
Gamma distributions. Moreover, a Markov field is proposed
to model the spatial correlation between mixture compo-
nents. Then, segmentation is performed using an Markov
chain Monte Carlo algorithm that jointly estimates the mix-
ture parameters and classifies voxels. The performance of the
proposed algorithm is illustrated on synthetic and real data.
Experimental results on real chest PET images suggest that
the proposed method can correctly segment both small and
large tumors.

Index Terms— PET imaging, Poisson-Gamma, Negative
Binomial, Mixture model, Markov-Potts, Bayesian estima-
tion, Gibbs sampler.

1. INTRODUCTION

Positron Emission Tomography (PET) is a nuclear imaging
modality that quantifies biological activity, an extremely use-
ful information for tumor assessment in clinical oncology.
However, quantification of tumor properties requires precise
PET segmentation algorithms, which is a challenging task
mainly due to the low SNR and strong artifacts intrinsic of
these images.

Numerous PET segmentation methods have been pro-
posed in the literature, including thresholding [1], clustering
[2], active contours [3], among several others. Moreover,
recent work has addressed PET segmentation in a Bayesian
framework. For instance, Chen et al. proposed a Markov
Random Field [4]. Gaussian mixtures have been used in [5]
and Gauss-Markov-Potts models in [6, 7]. At last, in [8],
the authors proposed a Poisson mixture model for PET pro-
jections and developed a double expectation-maximization
algorithm to solve PET reconstruction by combining anatom-
ical information.

Starting from PET physics, this work derives a new
Bayesian algorithm for PET image segmentation based on
a mixture of Poisson-Gamma distributions. Moreover, a

Markov field is proposed to model the spatial correlation be-
tween mixture components. Then, as in [9], segmentation is
performed by jointly estimating the mixture parameters and
classifying voxels.

2. PROPOSED BAYESIAN MODEL

Let rn ∈ N denote the amount of radioactivity received
from the nth voxel in a 3-D PET scan r ∈ NN . We shall
assume that r is composed by multiple biological tissues
{C1, ..., CK}, each with its own characteristic radioactivity.
In addition, we explicitly introduce a hidden label vector
z = {z1, . . . , zN} associated with the observation vector
r = {r1, . . . , rN} such that zn = k if rn ∈ Ck. Then, it is
possible to state the segmentation problem as follows:

ẑ = argmax
z

p(θ, z|r) (1)

where θ is a vector of parameters associated with a parametric
image formation model p(r|z,θ). We note that θ is consid-
ered unknown and its posterior density is estimated jointly
with the posterior related to the label vector z. The likelihood
p(r|z,θ) and the prior p(z,θ) are defined in what follows.

2.1. Likelihood

It has long been established that rn can be correctly modeled
as a Poisson random variable [10]:

rn ∼ P(λn) (2)

where P denotes the Poisson distribution and λn is the mean
radioactivity within the nth voxel. It easily follows that the
likelihood could be expressed as a finite Poisson mixture if
λn were forced to be uniform within each biological tissue.
However, biological activity is not homogeneous within tis-
sues, rendering the Poisson mixture model inaccurate. In this
study we consider intra-tissue heterogeneity by assigning in-
dependent radioactivities to each voxel. More specifically, we
propose to model radioactivities within a tissue as indepen-
dent and identically distributed random Gamma variables:

λn|zn = u ∼ Γ(αk, βk) (3)



where αk ∈ R+ and βk ∈ R+ are respectively the shape and
scale parameters associated with tissue Ck.

This distribution choice is motivated by the fact that the
marginal distribution

∫∞
0
P(rn|λn)Γ(λn|αk, βk)dλn yields

the Poisson-Gamma or Negative Binomial distribution:

p(rn|αk, ρk, zn = k) =

∫ ∞
0

P(rn|λ)Γ(λ|αk, βk)dλ

=

(
rn + αk + 1

rn

)
(1− ρk)αkρrnk

(4)

where ρk = 1
1+βk

. To conclude, we assume the observations
are mutually independent and express the likelihood as fol-
lows:

p(r|θ, z) =

N∏
n=1

p(rn|αk, ρk, zn = k) (5)

where p(rn|αk, ρk, zn = k) is defined in (4),
α = {α1, . . . , αK}T , ρ = {ρ1, . . . , ρK}T and θ = (αT ,ρT )T .

2.2. Prior Distribution

The unknown parameter vector for this problem is written as
θ = (αT ,ρT )T . We note that ρk ∈ ]0, 1[ since 0 < β < ∞.
Moreover, the number of classes K is assumed to be known
in this study. This assumption might be relaxed by using a di-
mension matching strategy, such as a reversible jump Markov
chain Monte Carlo (MCMC) algorithm [11]. The prior dis-
tributions assigned to the unknown parameters as well as the
label vector are introduced below.

2.2.1. Poisson-Gamma priors

First, the prior for the shape parameter α is elected as an in-
verse Gamma distribution with hyperparameters a0 and b0

αk ∼ IG(a0, b0), k = 1, . . . ,K (6)

where the hyperparameters are fixed to a0 = 1 and b0 = 1,
yielding a vague prior.
A conjugate Beta distribution is chosen as prior for ρk:

ρk ∼ B(c0, d0), k = 1, . . . ,K (7)

where the hyperparameters are fixed to c0 = 1 and d0 = 1
yielding a flat prior.
At last, assuming the mixture parameters a priori indepen-
dent, the joint prior distribution for the vector θ is:

p(θ) =

K∏
k=1

p(αk)p(ρk) (8)

2.2.2. Labels z

The prior on the label vector p(z) should promote the spatial
coherence inherent to biological tissues. Since the seminal
work of Geman [12], Markov Random Fields (MRF) have
become a popular prior choice to express spatial correlation
in images. In this study we consider a 3-D Markov-Potts field
as prior distribution for z [13]:

p(z) =
1

C(γ)
exp

 N∑
n=1

∑
n′∈V(n)

γδ(zn − zn′)

 (9)

where γ is the granularity coefficient, C(γ) is the normalizing
constant or partition function, δ(·) is the Kronecker function
and V(·) denotes a 3-D first-order neighborhood structure .

2.3. Posterior Distribution of (θ, z)

Assuming the unknown parameter vectors θ and z are a priori
independent and using Bayes theorem, the posterior distribu-
tion of the parameter vector (z,θ) can be expressed as:

p (θ, z|r) ∝ p(r|θ, z)p(θ)p(z) (10)

where the likelihood p(r|θ, z) and the prior distributions p(θ)
and p(z) have been defined in (5), (8) and (9), respectively.
Deriving explicit solutions to the segmentation problem (1)
is not possible because of the complexity of the posterior
distribution (10). Instead, we proceed as in [9] and use an
MCMC algorithm to generate samples that are asymptotically
distributed according to posterior (10) [14]. Then, these sam-
ples can be used to approximate the maximum a posteriori
(MAP) estimator, as in [15].

3. HYBRID GIBBS SAMPLER

This section presents a Metropolis-within-Gibbs sampler that
solves the segmentation problem (1). The principle of this
algorithm is to generate samples that are asymptotically dis-
tributed according the posterior density (10) and use those
samples to compute the MAP estimate. The generation of
these samples is achieved by iteratively drawing from the con-
ditional distributions of the posterior distribution (10) pro-
vided below. The interested reader is referred to [14] for more
details about MCMC methods.

3.1. Conditional probability p(z|θ, r)

The conditional distribution of the discrete class label zn is
fully characterized by the probabilities

p(zn = k|rn, αk, ρk, z−n)

∝ p(rn|αk, ρk, zn = k)p(zn|z−n)
(11)



where k = 1, . . . ,K and z−n denotes the vector z whose
nth element has been removed. In view of equations (4) and
(9) it is possible to express these probabilities as follows:

p(zn = k|rn, αk, ρk, z−n)

∝
(
rn + αk + 1

rn

)
(1− ρk)αkρrnk

× exp

 N∑
n=1

∑
n′∈V(n)

γδ(zn − zn′)


(12)

Note that the posterior probabilities of the label vector z in
(12) define an MRF. Consequently, sampling from this condi-
tional distribution can be achieved by drawing a discrete value
in the finite set 1, . . . ,K with probabilities (12).

3.2. Conditional distribution of p(α|ρ, z, r)

Moreover, a Metropolis-Hasting (MH) algorithm can be
used to generate samples that are asymptotically distributed
according to p(α|ρ, z, r), leading to a Metropolis-within-
Gibbs algorithm [14, p. 317]. More specifically, α is updated
coordinate-by-coordinate using a random walk MH algorithm
[14, p. 245] with the following proposal distribution:

α∗k ∼ N (α
(t−1)
k , σ2). (13)

where α(t−1)
k is the previous value of the chain and the vari-

ance σ2 is chosen to ensure an acceptance ratio close to 1
2 , as

recommended in [16]. Moreover, given that the proposal dis-
tribution is symmetric, the acceptance ratio is reduced to the
likelihood and the prior ratios

a = min

{
1,

N∏
n:zn=k

p(rn|α∗k, ρk, zn = k)p(α∗k|a0, b0)

p(rn|α(t−1)
k , ρk, zn = k)p(α

(t−1)
k |a0, b0)

}

where the prior distribution p(αk|a0, b0) is defined in (6).

3.3. Conditional distribution of p(ρ|α, z, r)

At last, we draw samples directly from the conditional distri-
bution p(ρ|α, z, r), which has the following expression (k =
1, . . . ,K):

ρk ∼ B

(
c0 +Nkαk, d0 +

∑
n:zn=k

rn

)
. (14)

4. EXPERIMENTAL RESULTS

The proposed method has been validated using synthetic
data and evaluated on real patient PET images. This section
presents the results of these simulations and experimentation.

4.1. Synthetic Data

A synthetic 2-component Poisson-Gamma mixture (50×50×
5) 3D-map has been generated with ρ = [0.1; 0.2] and α =
[5; 6]. A single MCMC chain of 30, 000 iterations (including
250 burn-in iterations) has been applied to this data. Figure
1 shows histograms of the estimated posterior density for the
unknown parameters. This illustrates the accuracy of the esti-
mations despite the fact that parameters are very close.

p(ρ1|θ) p(ρ2|θ) p(α1|θ) p(α2|θ)

Fig. 1. Histograms of parameters resulting from the MCMC chain.

Moreover, in order to assess the performance of the algo-
rithm, 100 independent Monte Carlo runs (each of 500 itera-
tions after 250 burn-in iterations) have been performed with
parameters ρ = [0.2; 0.5] and α = [7; 12]. MMSE esti-
mates of each parameter and corresponding standard devia-
tions were ρ̂ = [0.199 ± 0.008; 0.490 ± 0.014] and α̂ =
[6.96 ± 0.36; 11.58 ± 0.64]. As it can be observed, the esti-
mates are in agreement with the theoretical parameters.

Finally, labeling has been illustrated on a 3-component
spatially coherent simulated dataset with ρ = [0.2; 0.5; 0.8]
and α = [7; 12; 14]. Figure 2 shows the true labels z, the
generated data, and the MAP estimates. One can observe the
good retrieval of the classes (0.09% of misclassified pixels).

Fig. 2. True labels, generated values and MAP estimates for a 3-
class mixture.

4.2. Application to real data

The proposed segmentation method has been applied to real
chest PET images acquired using the GE-DST system. Figure
3 shows three slices of a region of interest (116×151×3) and
the corresponding MAP class labels estimated using a 5-class
MCMC chain with 250 iterations and 250 additional burn-in
iterations. We observe that two tumors have been segmented
(white regions). These are in agreement with the clinician’s
evaluation. Delineation of these regions using the widely used
thresholding method would have required a threshold value
of 13% as opposed to 40% used by clinicians. These results



illustrate the robustness of the proposed method to heteroge-
neous activity. In addition, we observe that the different bio-
logical tissues have also been labeled distinctly.

Fig. 3. Original images and the corresponding estimated labels.

At last, figure 4 shows that the probability density func-
tion estimated using the proposed mixture model (in red)
closely fits the empirical density (in blue), which has been
estimated using a Gaussian kernel method.

Fig. 4. Voxel-intensity distribution in linear (left) and logarithmic
(right) scales. [Red]: proposed Bayesian estimation. [Dashed blue]:
non-parametric kernel estimation

5. CONCLUSION

Starting from PET physics, a Poisson-Gamma mixture model
has been proposed to represent the activity in PET images. In
addition, a Markov field was used to describe the spatial cor-
relation between mixture components. Then, segmentation
was performed using an MCMC algorithm that jointly esti-
mates the mixture parameters and classifies voxels. Exper-
imental results on real chest PET images suggested that the

proposed method outperforms the widely used 40% thresh-
olding technique. At last, future work will focus on designing
characterization indicators based on the posterior density of
activity within tumors.
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