Unmixing hyperspectral images
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Abstract. This paper proposes a new spectral unmixing strategy based on the normal composi-
tional model that exploits the spatial correlations between the image pixels. The pure materials
(referred to as endmembers) contained in the image are assumed to be available (they can be ob-
tained by using an appropriate endmember extraction algorithm), while the corresponding fractions
(referred to as abundances) are estimated by the proposed algorithm. Due to physical constraints,
the abundances have to satisfy positivity and sum-to-one constraints. The image is divided into ho-
mogeneous distinct regions having the same statistical properties for the abundance coefficients. The
spatial dependencies within each class are modeled thanks to Potts-Markov random fields. Within a
Bayesian framework, prior distributions for the abundances and the associated hyperparameters are
introduced. A reparametrization of the abundance coefficients is proposed to handle the physical
constraints (positivity and sum-to-one) inherent to hyperspectral imagery. The parameters (abun-
dances), hyperparameters (abundance mean and variance for each class) and the classification map
indicating the classes of all pixels in the image are inferred from the resulting joint posterior distri-
bution. To overcome the complexity of the joint posterior distribution, Markov chain Monte Carlo
methods are used to generate samples asymptotically distributed according to the joint posterior of
interest. Simulations conducted on synthetic and real data are presented to illustrate the performance
of the proposed algorithm.
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1. INTRODUCTION

Spectral unmixing is a key issue in hyperspectral image analysis and therefore has received
considerable attention in the signal and image processing literature (see for instance [1] and
references therein). The linear mixing model (LMM) assumes that an image pixel is the linear
combination of a given number R of pure deterministic spectra, known as endmembers, weighted
by their corresponding fractions, known as abundances [1]. The first step of unmixing consists
of recovering the endmember spectral signatures using an endmember extraction algorithm
(EEA) such as the N-FINDR [2]. Note that these two steps can be done jointly as in [3]. The
EEA step is then followed by the so-called inversion step where the abundances are estimated.
Due to obvious physical considerations, the abundances must satisfy positivity and sum-to-one
constraints. Many algorithms have been developed for this LMM-based inversion step [1], [4],
[5]. Recently, the normal compositional model (NCM) introduced in [6] has been proposed as
an alternative of the LMM for a new Bayesian inversion algorithm [7]. The NCM assumes that
the reflectance vector y, = [y1,p,...,yr | measured in L bands of a pixel p is a combination
of random endmembers with known means (instead of deterministic and known ones with the

LMM)
R
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where R is the number of pure materials in the pixel p, the ey,...,eg are independent Gaussian
vectors and ay, is the rth (r = 1,...,R) abundance coefficient of the pth pixel. As illustrated in
[7], the NCM can be preferred to the LMM when the image does not contain enough pure pixels.
A similar model to the NCM was proposed in [8] that estimates the endmember means while the
endmember covariance are known.

Most inversion strategies have been developed in a pixel-by-pixel context. Consequently, they
do not exploit the possible spatial dependance between the different pixels of the hyperspectral
image. We propose in this paper to exploit the correlations between the pixel of the image to de-
rive a new unmixing procedure. More precisely, we generalize the Bayesian unmixing algorithm
developed in [7] to take into account spatial correlations between the pixels of an hyperspectral
image. First, the image is partitioned into homogeneous regions. In each region, the abundance
vectors are assumed to share the same first and second order moments (means and covariances).
This implies an implicit image classification modeled by hidden labels whose spatial depen-
dencies are modeled by a Potts-Markov random field [9], a particular case of Markov random
fields (MRFs). Appropriate prior distributions with unknown means and variances depending
on the pixel class are chosen for the abundance vectors. These abundances are reparametrized
since the uniform prior distribution used in previous work (like in [4] or [7]) is not sufficiently
flexible to allow ones an efficient image partitioning. The accuracy of the abundance estimation
depends on the associated hyperparameters. We propose to estimate these hyperparameters in a
fully unsupervised manner by introducing a second level of hierarchy in the Bayesian inference.
Hyperparameters are then assigned non-informative prior distributions. The joint posterior dis-
tribution of the parameters and hyperparameters is then computed from the likelihood and these
prior distributions. The resulting posterior is too complex to derive the classical Bayesian esti-
mators such as the MMSE and MAP estimators. Thus we propose to use Markov chain Monte
Carlo (MCMC) methods to generate samples asymptotically distributed according to the joint
posterior. These samples are then used to estimate the unknown model parameters.

2. PROBLEM FORMULATION

2.1. Introducing spatial dependencies between the image pixels

This paper assumes that the abundances of a given pixel are a priori similar to the abundances
of its neighboring pixels. Firstly, the image is divided into K regions or classes. In each class,
the abundance vectors have the same mean and covariance matrix for all the pixels of the class.
The subset Iy C {1,...,P} contains the indexes of the pixels that belong to the kth class. The
vector z = [zy,...,zp] where P is the total number of pixels and z, € {1,...,K} represents the
hidden variables or labels that allow one to identify the class to which each pixel p belongs
(p=1,...,P),ie., z, =kif and only if p € I.

As explained above, the abundances have to satisfy positivity and sum-to-one constraints for
each pixel p

a.p>0,Vr=1,...,R, )
{ Zf:l“r=p: 1, @
where a, = [aLp,...,aR,p]T and R number of pure materials. This paper proposes

to reparametrize the abundance coefficients by using random logistic coefficients
T o
t,=[t1p....,trp] (see[10] and [11] for motivation)

expl(t
arp = M 3)
r=1 exp(tr-,P)

304



This reparametrization ensures positivity and sum-to-one constraints for the abundances. In a
given class k, a common Gaussian distribution (with mean vector Y and covariance matrix G%)
is chosen as prior for the logistic coefficients t,, relative to the pixels p € Ii. Therefore, the class
k is fully characterized by a mean vector Y and a covariance matrix Xy.

2.2. Likelihood

The NCM model assumes the endmember e, (r =1,...,R, p=1,...,P) has a Gaussian
distribution ew|wf7 ~ N (mr,wf,IL), with m, known. Therefore the likelihood function of y,
can be expressed as

2
F vty #3) = exp l—'?éﬁ“tp)”], )
[2nw2e(t,)] 2 wie(ty)
with
R R
u(ty) = Z,lmranp(tp)a cty) = Z,la%,p(tp),
r= r=
and ||x|| = vxTx is the standard ¢, norm. By assuming independence between the different

observed spectra, the likelihood of the P image pixels is

P
FOYT,w) =TT f(vpltp.wr). )
p=1

2.3. Parameter priors

The unknown parameter vector associated to the NCM unmixing strategy is defined as
O ={T,z,w}, where w = [w%, . ,w%] " is the endmember variance vector, z is the label vector
and T = [t;,...,tp] with t, = [ti p,...,tr,]" (p = 1,...,P) is the logistic coefficient matrix
used for the abundance reparametrization. This section introduces the prior distributions of the

unknown parameters and their associated hyperparameters in the proposed hierarchical Bayesian
framework.

Label prior. The spatial correlation between the image pixels can be represented by using
MRFs. MRFs allow one to define a symmetric relation between one pixel and its nearby
neighbors through the use of the labels. More specifically, the prior distribution of the label
vector z = [z1,. .. ,zp]T is a Potts-Markov random field, as in [12]. Considering a pixel p and its
4 nearby neighbors (first order neighborhood), the resulting prior distribution for the label vector
can be written as

P
fle)e<exp [BY. Y 8(zp—2zy)|, (6)
p=1peV(p)

where o means “proportional to”, V/(p) is the first order neighborhood, B is the granulariry
coefficient (assumed to be known in this study) and d(-) is the Kronecker function

8(x):{l,ifx:o,

0, otherwise.
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Logistic coefficient prior.  For a given pixel p and by assuming independence between the
logistic coefficients 71 ,,...,tg p, the prior distribution for the vector t, = [t1 p,... ,tRJ,]T is the
following Gaussian distribution

f (tplzp = kWi E) ~ N (Wi, Ei) (7

parameterized by the mean vector Wi = [W, ... ,\IIR,k]T and by the R x R diagonal covariance
matrix X; = diag <Gf k) whose diagonal elements are G%k for r = 1,...,R. Note that the mean

vector Y and the covariance matrix Xy of the logistic coefficient vector t, both depend on the
region k. By assuming prior independence between the P vectors ty,...,tp, the full posterior
distribution for the logistic coefficient matrix T is

K
f(T|‘P7Z) = H H f(tp|zp = kv"’kazk)a (8)

k=1pel}

with ¥ = [\|I1,...,\|IK] and X = {21,...,21(}.

Endmember variance prior. A conjugate inverse gamma distribution is assigned to the
pth endmember variance

wilk ~ IG(v,¥), 9)

where v and K are adjustable hyperparameters. In the sequel, v will be fixed (v = 1) and
Kk will be estimated as in [13]. Assuming independence between the endmember variances

wf, (p=1,...,P), the full prior distribution for w = [W%, . ,w%,] " can be expressed as
P
S (i) = [T/ (w3 %) (10)

p:

2.4. Hyperparameter priors

This paper proposes to define prior distributions for the logistic coefficient means ., and
variances Gf . s conjugate Gaussian and inverse-gamma distributions, i.e.,

Wik 0? ~ AL(0,v?)
o2 &y~ 1G(EY) 1D

where v? is an adjustable hyperparameter and & and 7y have been fixed to & =1 and y =5
(to obtain a large variance). Jeffreys’ priors are also assigned to the hyperparameters ¥ and v?

defined as | |
F9) e Tge (), F(07) e g (07). (12)

By assuming a priori independence between the individual hyperparameters, the full hyperprior
can be obtained for the hyperparameter vector Q = {‘P,Z,Dz, K}

K
f(Q) o< VO TTTT fwerlv?) £(o7s)- (13)

k=1r=1
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2.5. Joint distribution

The likelihood and the priors defined above allow one to express the joint posterior distribu-
tion using the hierarchical structure

P 1 u —H(tp ’
f@,QY) o< [T ———75exp [_ ; W]

p=t [wie(ty)] ’

P p 1 V41 . | R
ol 3w i) (5) )

p=1p'eV(p)

_ (W%k + 27"’_ Zpelk (tr,p _Wr,k)2>]

1
X H ng+1 CXp

2 2
rk Op 2v 207

(14)

with ny = card(I;). This posterior distribution is too complex to derive closed-form expressions
for the MMSE and MAP estimators of ®. A possible solution to this issue is the use of MCMC
methods. More precisely, a hybrid Gibbs sampler is proposed to generate samples that are
asymptotically distributed according to f(®,Q|Y). The samples are then used to approximate
the Bayesian estimators.

3. HYBRID GIBBS SAMPLER

The principle of the Gibbs sampler is to iteratively generate samples distributed according to the
conditional distributions of the parameters [14]. This section derives the conditional distributions
associated to (14).

Conditional distribution of the label vector z. For each pixel p (p = 1,...,P), the class
label z), is a discrete random variable whose conditional distribution is fully characterized by the
probabilities denoted as

_ 1 _
Pz, = kl|zp,t), Wi, Ei] o< [Ey | 1/zexp ) (ty _‘lfk)TZk ! (tp — W)
, (15)
X exp Z Z Bd(zp —2zp)
p=1p'eV(p)
with [E;| = le Gi  k=1,...,K (K is the number of classes) and z_, denotes the vector z whose

pth element has been removed. The parameter K is assumed to be known in this study (see [11]
for discussion about its estimation). Since this distribution is discrete, the samples are drawn by
generating a discrete value k € {1,...,K} with the probabilities (15) as explained in [15].
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Conditional distribution of logistic coefficient matrix T. For a given pixel p, the con-
ditional distribution of t, is

[Sle

1 1
f(tp|zp = k,\'fk,Zk,yp,S%) o< (2) exp {_22 ||y[7 _MaP(tI’)HZ}
5p 5p

_1 1
X |Zk’ éexp [—2 (tp —\pk)TZ‘.,:l (tp —\|Ik):| . (16)

Generating samples according to this posterior distribution can be achieved by using Metropolis-
Hastings step with a Gaussian proposal distribution as proposal distribution, following the
strategy detailed in [15].

Conditional distributions of the endmember variances. Considering each pixel p, the
following inverse-Gamma distribution is obtained for w%

L HYp F(tp)”
2 G 7
Wp‘ preps (2 ’ Zc(tn) (7

Conditional distributions of ¥ and X. For each endmember r (r = 1,...,R) and each
classk (k=1,...,K) and by denoting 7., = % Y e 5 trps the conditional distributions of ., and

Gf_k can be written as

2 - 2.2
Vgl i V7 C5k
z=k,t,,02,,0° ~ AR ’ 18
Wﬁk‘ 7y Ork N (Gik‘i‘vznk Gik+02nk> (18)
2 ny (tr.p - \Vr,k)z
Ol =kt W~ IG | 5+ 17+ ), o | (19)
PEly

Conditional distributions of V> and x. The conditional distributions of v2 and K are the
following inverse-Gamma and Gamma distributions, respectively

RK 1 & |
V¥~ IG <2,2 Zwka>, K!s~9<P,Zsz>. (20)
k=1

p=1°-p

The proposed Gibbs sampler iteratively generates Nyic samples distributed according to the
different conditional distributions described above. The first generated samples Ny; belonging
to the so-called burn-in period are ignored whereas the last samples are employed to estimate
the unknown model parameters and hyperparameters. More precisely, we estimate the labels
using the MAP estimator approximated by retaining the samples that maximizes the conditional
distribution of z. Then, each abundance vector is estimated conditionally to the MAP estimates
of its label by averaging the last samples associated to the corresponding pixel (following the
MMSE principle).

308



TABLE 1. Actual and estimated abundance means for each class.

Class 1 Class 2 Class 3
i =Elay)] m =Ela,)] p3 =Elay]
| Real values | [0.6,0.3,0.1]" | [0.3,0.5,02]" | [0.3,0.2,0.5]" |

| Estimates | [0.59,0.29,0.12]" | [0.31,0.49,0.2]" | [0.31,0.2,0.49]" |

8
c 04 1
£
3
% 0.2t ]
m '~
0 ! . . . .
0.5 1 1.5 2 25
Wavelength

FIGURE 1. The R = 3 endmember spectra: construction concrete (solid line), green grass (dashed line),
micaceous loam (dotted line).

4. SIMULATION RESULTS ON SYNTHETIC DATA

To analyze the performance of our algorithm, a 25 x 25 synthetic image with K = 3 classes
was considered. The image contains R = 3 mixed components whose spectra (L = 413 spec-
tral bands) are construction concrete, green grass and micaceous loam (extracted from ENVI
software library). These spectra are represented in Fig. 1.

A label map, shown Fig. 2 (left) was generated using a Potts-Markov random field with
B = 1.1. Then, the abundance means have been fixed for each class as reported in Table 1. The
generated abundance maps for the NCM are depicted in Fig. 3 (left). Note that a black (resp.
white) pixel indicates a weak (resp. strong) value of the abundance coefficient. The endmember
variance was generated according to its prior distribution with k = 1 x 1073, leading to a signal-
to-noise ratio of 12dB. A number of Nyic = 5000 iterations (with 500 burn-in iterations) was
chosen for all results.

5 10 15 20 25 5 10 15 20 25
FIGURE 2. Left: Actual label map. Right: label map estimated by the proposed hybrid Gibbs sampler.

The MAP estimates of the label vector z are shown on Fig. 2 (right) and the MMSE estimates
of the abundance vectors (conditionally upon the label MAP estimates) are represented in Fig. 3
(right). The estimated abundance means and variances for each endmember in each class have
been reported in Table 1 showing the good performance of the algorithm. Note that the execution
time of this simulation on a Core(TM)2Duo 2.66GHz was about 26 minutes. Comparisons with
previous unmixing results with fixed endmembers and K = 1 are reported in [11].
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FIGURE 3. Left: abundance maps of the 3 pure materials for NCM. Right: estimated abundance maps
of the 3 pure materials from the NCM hybrid Gibbs sampler (from left to right: construction concrete,
green grass, micaceous loam).

S. CONCLUSIONS

A new spectral unmixing strategy was developed taking into account the possible spatial corre-
lation between the pixels of an hyperspectral image. Hidden variables (labels) were introduced
to identify the classes resulting from the image partitioning. These abundances of each class
were assumed to share the same first and second order statistics. After a reparametrization of
the abundances, the joint posterior distribution of the unknown parameters and hyperparameters
was derived. We proposed to generate samples according to this posterior distribution using an
hybrid Gibbs sampler and to use these samples to estimate the image labels and the abundances
(conditionally upon the label estimates). The results obtained on simulated data are interesting.
This algorithm has also been applied on real data (see [15] for more details). The estimation of
the granularity coefficient involved in Potts-Markov random fields is currently under investiga-
tion.
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