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ABSTRACT
This paper studies a new Bayesian algorithm for the unmixing of
hyperspectral images. The proposed Bayesian algorithm is based
on the well-known linear mixing model (LMM). Spatial correlations
between pixels are introduced using hidden variables, or labels, and
modeled via a Potts-Markov random field. We assume that the pure
materials (or endmembers) contained in the image are known a pri-
ori or have been extracted by using an endmember extraction algo-
rithm. The mixture coefficients (referred to as abundances) of the
whole hyperspectral image are then estimated by using a hierarchi-
cal Bayesian algorithm. A reparametrization of the abundances is
considered to handle the physical constraints associated to these pa-
rameters. Appropriate prior distributions are assigned to the other
parameters and hyperparameters associated to the proposed model.
To alleviate the complexity of the resulting joint distribution, a hy-
brid Gibbs algorithm is developed, allowing one to generate samples
that are asymptotically distributed according to the full posterior dis-
tribution of interest. The generated samples are finally used to esti-
mate the unknown model parameters. Simulations on synthetic data
illustrate the performance of the proposed method.

Index Terms— Bayesian inference, Monte Carlo methods,
spectral unmixing, hyperspectral images, Markov random fields.

1. INTRODUCTION

The unmixing problem is a very crucial step in hyperspectral image
analysis. It consists of decomposing a measured pixel reflectance
into mixtures of pure spectra, known as endmembers, whose frac-
tions are referred to as abundances. A very common assumption
in the unmixing framework is to consider the image pixels as lin-
ear combinations of these endmembers. More precisely, the so-
called linear mixing model (LMM) assumes that the L-spectrum
yp = [yp,1, . . . , yp,L]T of a mixed pixel is modeled as

yp = Map + np, (1)

where M = [m1, . . . ,mR] is a known L × R matrix containing
the L-spectra of the endmembers, ap is the R × 1 abundance vec-
tor associated to the piwel p, R is the number of endmembers that
are present in the image and np is the independent and identically
distributed (i.i.d.) zero-mean Gaussian noise sequence with vari-
ance s2p. Due to obvious physical considerations, the abundances
satisfy positivity and sum-to-one constraints. In this work, the end-
member spectral signatures are assumed to be known and can be
obtained from a spectral library or by an endmember extraction al-
gorithm (EEA), such as the Pixel Purity Index (PPI) [1], N-finder
(N-FINDR) [2] or the vertex component analysis (VCA) [3]. Af-
ter identification of these signatures, the corresponding abundances

are estimated using an inversion step. Many algorithms have been
developed for this inversion. For instance, these algorithms can be
based on Bayesian inference [4] or on the fully constrained least
squares (FCLS) method [5]. However, all these inversion strategies
have been developed in a pixel-by-pixel context. Consequently, they
do not exploit the possible spatial correlations between the different
pixels of the hyperspectral image.

We propose in this paper to exploit the correlations between the
pixel of the image to derived a new unmixing procedure. More pre-
cisely, the Bayesian unmixing strategy developed in [4] is general-
ized to take into account spatial correlations between the pixels of
an hyperspectral image. First, the image is partitioned into homo-
geneous regions in which the abundance vectors have the same first
and second order statistics (means and covariances). This implies
an implicit image classification modeled by hidden labels whose
spatial dependencies are modeled by a Potts-Markov random field
[6] (a particular case of Markov random fields (MRF)). Popularized
by Geman [7], the MRFs are a very useful tool to describe neigh-
borhood dependance between image pixels and have been used for
hyperspectral image classification [8]. Appropriate prior distribu-
tions with unknown means and variances depending on the pixel
class are chosen for the abundance vectors that are reparametrized
in a much more flexible way than in [4]. The associated hyperpa-
rameters are assigned non-informative prior distributions. The joint
posterior distribution is then computed from the likelihood and these
prior distributions. This posterior is too complex to derive the clas-
sical Bayesian estimators such as the MMSE and MAP estimators.
Thus we propose to use Markov chain Monte Carlo (MCMC) meth-
ods to generate samples asymptotically distributed according to the
joint posterior of interest. These samples are then used to estimate
the unknown model parameters.

The remainder of the paper is organized as follows. Section 2
presents the proposed hierarchical Bayesian model for hyperspectral
image unmixing. Section 3 studies an MCMC strategy that gener-
ates samples according to the resulting posterior. Section 4 shows
simulation results on synthetic data. Conclusions are reported in
Section 5.

2. HIERARCHICAL BAYESIAN MODEL

Before presenting the likelihood and prior distributions for this un-
mixing problem, the image partitioning and the reparametrization of
the abundance coefficients are formally described.

2.1. Introducing spatial dependencies between the image pixel
abundances

This paper assumes that the abundances of a given pixel are a priori
close to the abundances of its neighboring pixels. Let the image be



partitioned into K regions or classes and Ik ⊂ {1, . . . ,K} denotes
the subset of pixel indexes belonging to the kth class. We introduce
a label vector denoted as z = [z1, . . . , zP ]T where P is the total
number of pixels and zp ∈ {1, . . . ,K} allows one to identify the
class to which each pixel p belongs (p = 1, . . . , P ). In other words
zp = k if and only if p ∈ Ik.

In each class, the abundance vectors share the same mean and
variance. As explained above, the abundances have to satisfy posi-
tivity and sum-to-one constraints for each pixel p{

ar,p ≥ 0, ∀r = 1, . . . , R,∑R
r=1 ar,p = 1,

(2)

where ap = [a1,p, . . . , aR,p]
T . Following the strategy in [9], we

propose to reparametrize the abundance coefficients by using ran-
dom logistic coefficients tp = [t1,p . . . , tR,p]

T such as

ar,p =
exp(tr,p)∑R
r=1 exp(tr,p)

. (3)

This reparametrization ensures positivity and sum-to-one constraints
for the abundances. We assume that the distribution of the logistic
coefficients tp, p ∈ Ik for the kth class is a Gaussian distribution,
i.e., fully characterized by a mean vectorψk and a covariance matrix
Σk.

2.2. Likelihood

First, the unknown parameter vector associated to the LMM unmix-
ing strategy is defined as Θ = {T ,z, s}, where s =

[
s21, . . . , s

2
P

]T
is the noise variance vector, z is the label vector andT = [t1, . . . , tP ]

with tp = [t1,p, . . . , tR,p]
T (p = 1, . . . , P ) is the logistic coeffi-

cient matrix used for the abundance reparametrization. The additive
white Gaussian noise sequence of the LMM allows one to write1

yp|tp, s2p ∼ N
(
Map(tp), s

2
pIL)

)
(p = 1, . . . , P ). Therefore the

likelihood function of yp can be expressed as

f
(
yp |tp, s

2
p

)
=

(
1

2πs2p

)L
2

exp

[
−
‖yp −Map(tp)‖2

2s2p

]
, (4)

where ‖x‖ =
√
xTx is the standard `2 norm. By assuming indepen-

dence between the noise vectors np (p = 1, . . . , P ), the likelihood
of the P image pixels is

f (Y |T , s) =

P∏
p=1

f
(
yp|tp, s

2
p

)
. (5)

2.3. Parameter priors

This section introduces the prior distributions of the unknown pa-
rameters and their associated hyperparameters in the proposed hier-
archical Bayesian framework.

2.3.1. Label prior

The spatial correlation between the image pixels can be repre-
sented by using MRFs as stated above. The MRFs allow one
to define a symmetric relation between one pixel and its nearby
neighbors through the use of integer variables (the labels in our

1Note that the dependence of the abundance vector ap on the logistic
coefficient vector tp throught (3) is explicitly mentioned by denoting ap =
ap(tp).

study). More specifically, the prior distribution of the label vec-
tor z = [z1, . . . , zP ]T is a Potts-Markov random field, as in [8].
Considering a pixel p and its 4 nearby neighbors (first order neigh-
borhood), the resulting prior distribution for the label vector can be
written as

f(z) ∝ exp

 P∑
p=1

∑
p′∈V(p)

βδ(zp − zp′)

 , (6)

where ∝ means “proportional to”, V(p) is the first order neighbor-
hood, β is the granularity coefficient (assumed to be known in this
study) and δ(·) is the Kronecker function

δ(x) =

{
1, if x = 0,
0, otherwise.

2.3.2. Logistic coefficients and noise variance prior

For a given pixel p and by assuming independence between the lo-
gistic coefficients t1,p, . . . , tR,p, the prior distribution for the vector
tp = [t1,p, . . . , tR,p]

T is the following Gaussian distribution

f (tp|zp = k,ψk,Σk) ∼ N (ψk,Σk) (7)

parameterized by the hyperparameter vectorψk = [ψ1,k, . . . , ψR,k]T

and by the R × R diagonal matrix Σk = diag
(
σ2
r,k

)
whose diag-

onal elements are σ2
r,k for r = 1, ..., R. Note that, as highlighted

in paragraph 2.1, the mean vector ψk and the covariance matrix Σk

of the logistic coefficient vector tp both depend on the region k. By
assuming prior independence between the P vectors t1, . . . , tP , the
full posterior distribution for the logistic coefficient matrix T is

f (T |Ψ,Σ) =

K∏
k=1

∏
p∈Ik

f (tp|zp = k,ψk,Σk) , (8)

with Ψ = [ψ1, . . . ,ψK ] and Σ = {Σ1, . . . ,ΣK}.
A conjugate exponential distribution is assigned to the inverse

noise variance,
s−2
p |δ ∼ E(δ) (9)

where δ is an adjustable hyperparameter. Assuming independence
between the noise variances s2p, (p = 1, . . . , P ), the full prior dis-
tribution for s =

[
s21, . . . , s

2
P

]T can be expressed as

f (s|δ) =

P∏
p=1

f
(
s2p|δ

)
. (10)

Hierarchical Bayesian algorithms consist of jointly estimating the
model parameters and hyperparameters. These algorithms require to
define prior distributions for the unknown hyperparameters. It is the
purpose of the next section.

2.4. Hyperparameter priors

We propose to define prior distributions for the logistic coefficient
means ψr,k and variances σ2

r,k as conjugate Gaussian and inverse-
gamma distributions, i.e.,

ψr,k|υ2 ∼ N
(
0, υ2

)
σ2
r,k|ξ, γ ∼ IG(ξ, γ)

(11)

where υ2 is an adjustable hyperparameter and ξ and γ have been
fixed to ξ = 1 and γ = 5 (in order to obtain a large variance).



Moreover, we assign Jeffreys’ priors to the hyperparameters δ and
υ2 defined as

f(δ) ∝ 1

δ
1R+(δ), f(υ2) ∝ 1

υ2
1R+(υ2). (12)

By assuming a priori independence between the individual hyperpa-
rameters, the full hyperprior can be obtained for the hyperparameter
vector Ω =

{
Ψ,Σ, υ2, δ

}
f(Ω) ∝ f(δ)f(υ2)

K∏
k=1

R∏
r=1

f(ψr,k|υ2)f(σ2
r,k). (13)

2.5. Joint distribution

The likelihood and the priors define above allow us to express the
joint posterior distribution using the hierarchical structure

f(Θ,Ω|Y ) = f(Y |Θ)f(Θ|Ω)f(Ω)

∝
P∏
p=1

(
1

s2p

)L
2

exp

[
−
‖yp −Map(tp)‖2

2s2p

]

× exp

 P∑
p=1

∑
p′∈V(p)

βδ(zp − zp′)


× δP−1

P∏
p=1

(
1

w2
p

)ν+1

exp

(
− δ

w2
p

)(
1

υ2

)RK
2 +1

×
∏
r,k

1

σ
nk+1
r,k

exp

[
−

(
ψ2
r,k

2υ2
+

2γ +
∑
p∈Ik

(tr,p − ψr,k)2

2σ2
r,k

)]
(14)

with nk = card(Ik). Since the posterior distribution (14) is too
complex to derive closed-form expressions for the MMSE and MAP
estimators of Θ, a hybrid Gibbs sampler is employed to generate
samples that are asymptotically distributed according to this distri-
bution. The samples are then used to approximate the Bayesian esti-
mators.

3. HYBRID GIBBS SAMPLER

The principle of the Gibbs sampler is to iteratively generate samples
distributed according to the conditional distributions of the distri-
bution of interest. This section derives the conditional distributions
associated to (14).

3.1. Conditional distribution of the label vector z

For each pixel p (p = 1, . . . , P ), the class label zp is a discrete
random variable whose conditional distribution is fully characterized
by the probabilities expressed as

P [zp = k|z-p, tp,ψk,Σk] ∝

|Σk|−1/2 exp

[
−1

2
(tp −ψk)T Σ−1

k (tp −ψk)

]

× exp

 P∑
p=1

∑
p′∈V(p)

βδ(zp − zp′)

 (15)

with |Σk| =
∏R
r=1 σ

2
r,k, k = 1, ...,K (K is the number of classes)

and z-p denotes the vector z whose pth element has been removed.
Since this distribution is discrete, the samples are drawn by generat-
ing a discrete value in the finite set {1, . . . ,K}with the probabilities
(15) as detailed in [10].

3.2. Conditional distribution of logistic coefficient matrix T

For a given pixel p, the conditional distribution of tp is

f
(
tp|zp = k,ψk,Σk,yp, s

2
p

)
∝(

1

s2p

)L
2

exp

{
− 1

2s2p

∥∥yp −Map(tp)
∥∥2
}

× |Σk|−
1
2 exp

[
−1

2
(tp −ψk)T Σ−1

k (tp −ψk)

]
. (16)

Since it is too difficult to generate samples according to this poste-
rior distribution, a Metropolis-Hastings step is used with a Gaussian
distribution as proposal distribution, following the strategy detailed
in [10].

3.3. Conditional distributions of the noise variances

Considering each pixel p, s2p|yp, tp, δ is distributed according to the
inverse-Gamma distribution

s2p|yp, tp, δ ∼ IG

(
L

2
+ 1,

‖yp −Map(tp)‖2

2
+ δ

)
. (17)

3.4. Conditional distributions of Ψ and Σ

For each endmember r (r = 1, . . . , R) and each class k (k =
1, . . . ,K) and by denoting tr,k = 1

nk

∑
p∈Ik

tr,p, the conditional
distributions of ψr,k and σ2

r,k can be written as

ψr,k|z = k, tr, σ
2
r,k, υ

2 ∼ N

(
υ2nktr,k

σ2
r,k + υ2nk

,
υ2σ2

r,k

σ2
r,k + υ2nk

)
(18)

σ2
r,k|z = k, tr, ψr,k ∼ IG

nk
2

+ 1, γ +
∑
p∈Ik

(tr,p − ψr,k)2

2

 .

(19)

3.5. Conditional distributions of υ2 and δ

The conditional distributions of υ2 and δ are respectively the follow-
ing inverse-gamma and gamma distributions

υ2|Ψ ∼ IG

(
RK

2
,

1

2

K∑
k=1

ψk
Tψk

)
, δ|s ∼ G

(
P,

P∑
p=1

1

s2p

)
.

(20)
The proposed Gibbs sampler iteratively generates NMC samples dis-
tributed according to (15), (16), (17), (18), (19) and (20). The first
generated samples Nbi belonging to the so-called burn-in period are
ignored whereas the last samples are used to estimate the unknown
model parameters and hyperparameters. More precisely, the labels
are estimated using the MAP estimator approximated by retaining
the samples that maximizes the conditional distribution of z. Then,
the abundance vector must be estimated conditionally to the MAP
estimates of the labels. The MMSE estimator employed can be ap-
proximated by averaging over the NMC −Nbi samples.

4. SIMULATION RESULTS ON SYNTHETIC DATA

The accuracy of the proposed unmixing algorithm has been tested on
a 25× 25 synthetic image with K = 3 different classes and R = 3
mixed components whose spectra (L = 413 spectral bands) are con-
struction concrete, green grass and micaceous loam (extracted from



Table 1. Actual and estimated abundance mean and variance for each class.
Class 1 Class 2 Class 3

E[ap] Var[ap,r] E[ap] Var[ap,r] E[ap] Var[ap,r]

Actual values [0.6, 0.3, 0.1]T 0.005 [0.3, 0.5, 0.2]T 0.005 [0.3, 0.2, 0.5]T 0.005

Estimated values (LMM) [0.58, 0.29, 0.13]T 0.0047 [0.29, 0.49, 0.2]T 0.0055 [0.31, 0.19, 0.49]T 0.0076

ENVI software library). A label map, represented in Fig. 1 (left),
has been generated using a Potts-Markov field with β = 1.1. Then,
the mean and variance for the abundances have been chosen for each
class according to the values in Tab. 1. The generated abundance
maps for the LMM are depicted in Fig. 2 (top). Note that a black
(resp. white) pixel indicates a weak (resp. strong) value of the abun-
dance coefficient. The noise variance was generated according to its
prior distribution with δ = 1×10−3, leading to a signal-to-noise ra-
tio of 19dB. A number of NMC = 5000 iterations (with 500 burn-in
iterations) was chosen for all results.

As mentioned previously, the samples generated by the Gibbs
sampler allow us to determine the MMSE and MAP estimators of
the model parameters. Fig. 1 (right) shows MAP estimates for the la-
bel vectors. The corresponding MMSE estimates of the abundances
conditioned upon these estimated labels are depicted in Fig. 2 (bot-
tom). Table 1 shows the estimated means and variances of the es-
timated abundances. The estimated classes, abundance coefficients
and abundance mean vectors estimated by our algorithm are clearly
in accordance with the actual values of these parameters. Note that
the execution time of this simulation on a Core(TM)2Duo 2.66GHz
was about 26 minutes.

Fig. 1. Left: original labels. Right: labels estimated by the proposed
hybrid Gibbs sampler.

5. CONCLUSIONS

This paper studied a new unmixing algorithm taking into account
the spatial correlations between the pixels of an hyperspectral im-
age. An additional hidden discrete variable (label) was introduced to
identify several classes defined by homogeneous abundances (with
common first and second order statistics). We derived the joint pos-
terior distribution of the unknown parameters and hyperparameters
associated to the proposed Bayesian linear mixing model and gener-
ated samples according to this posterior distribution using an hybrid
Gibbs sampler. The generated samples were then used to estimate
the abundance maps as well as the underlying image labels. The re-
sults obtained on simulated data are interesting. This algorithm has
also been applied on real data. The results are given in [10]. The
estimation of the granularity coefficient involved in Potts-Markov
random fields is currently under investigation.

Fig. 2. Top: abundance maps of the 3 pure materials for LMM. Bot-
tom: estimated abundance maps of the 3 pure materials from the
LMM hybrid Gibbs sampler (from left to right: construction con-
crete, green grass, micaceous loam).
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