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Abstract—This paper studies a fully Bayesian algorithm for end-
member extraction and abundance estimation for hyperspectral
imagery. Each pixel of the hyperspectral image is decomposed as a
linear combination of pure endmember spectra following the linear
mixing model. The estimation of the unknown endmember spectra
is conducted in a unified manner by generating the posterior distri-
bution of abundances and endmember parameters under a hierar-
chical Bayesian model. This model assumes conjugate prior distri-
butions for these parameters, accounts for nonnegativity and full-
additivity constraints, and exploits the fact that the endmember
proportions lie on a lower dimensional simplex. A Gibbs sampler
is proposed to overcome the complexity of evaluating the resulting
posterior distribution. This sampler generates samples distributed
according to the posterior distribution and estimates the unknown
parameters using these generated samples. The accuracy of the
joint Bayesian estimator is illustrated by simulations conducted on
synthetic and real AVIRIS images.

Index Terms—Bayesian inference, endmember extraction, hy-
perspectral imagery, linear spectral unmixing, MCMC methods.

I. INTRODUCTION

O VER the last several decades, much research has been
devoted to the spectral unmixing problem. Spectral un-

mixing is an ef�cient way to solve standard problems encoun-
tered in hyperspectral imagery. These problems include pixel
classi�cation [1], material quanti�cation [2] and subpixel de-
tection [3]. Spectral unmixing consists of decomposing a pixel
spectrum into a collection of material spectra, usually referred to
as endmembers, and estimating the corresponding proportions
or abundances [4]. To describe the mixture, the most frequently
encountered model is the macroscopic model which gives a
good approximation in the re�ective spectral domain ranging
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from 0.4 to 2.5 [5]. The linearization of the nonlinear
intimate model proposed by Hapke in [6] results in this macro-
scopic model [7]. The macroscopic model assumes that the ob-
served pixel spectrum is a weighted linear combination of the
endmember spectra.

As reported in [4], linear spectral mixture analysis (LSMA)
has often been handled as a two-step procedure: the endmember
extraction step and the inversion step, respectively. In the �rst
step of analysis, the macroscopic materials that are present in
the observed scene are identi�ed by using an endmember extrac-
tion algorithm (EEA). The most popular EEAs include pixel pu-
rity index (PPI) [8] and N-FINDR [9], that apply a linear model
for the observations with nonnegativity and full-additivity1 con-
straints. This model results in endmember spectra located on the
vertices of a lower dimensional simplex. PPI and N-FINDR es-
timate this simplex by identifying the largest simplex contained
in the data. Another popular alternative, called vertex compo-
nent analysis (VCA) has been proposed in [10]. A common as-
sumption in VCA, PPI and N-FINDR is that they require pure
pixels to be present in the observed scene, where pure pixels are
pixels composed of a single endmember. Alternatively, Craig
[11] and Bowles [12] have proposed minimum volume trans-
forms (MVT) to �nd the smallest simplex that contains all the
pixels [11]. However, these MVT-based methods are not fully
automated techniques: they provide results that strongly depend
on i) the algorithm initialization, ii) some ad hoc parameters that
have to be selected by the user. More recently, a new MVT algo-
rithm has been introduced in [13]. This minimum volume sim-
plex analysis provides a suboptimal solution of the nonconvex
optimization problem. More generally, the MVT approaches
avoids the dif�cult problem of direct parameter estimation on
the simplex. Furthermore, as mentioned in [13], the minimum
volume simplex analysis (MVSA) provides a suboptimal solu-
tion of the nonconvex optimization problem. Note also that the
performance of these approaches may be negatively affected by
the presence of outliers and noise. The interested reader is in-
vited to consult [14] and [15] for a recent performance compar-
ison of some standard EEAs. The second step in LSMA, called
the inversion step, consists of estimating the proportions of the
materials identi�ed by EEA [16]. The inversion step can use var-
ious strategies such as least square estimation [17], maximum
likelihood estimation [18] and Bayesian estimation [19].

The central premise of this paper is to propose an algorithm
that estimates the endmember spectra and their respective abun-
dances jointly in a single step. This approach casts LSMA as a

1The full-additivity constraint, that will be detailed in the following section,
refers to a unit � -norm.
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blind source separation (BSS) problem [20]. In numerous �elds,
independent component analysis (ICA) [21] has been a main-
stay approach to solve BSS problems. In hyperspectral imagery,
ICA has also been envisaged [22]. However, as illustrated in [16]
and [23], ICA may perform poorly for LSMA due to the strong
dependence between the different abundances [24]. Inspired by
ICA, dependent component analysis has been introduced in [25]
to exploit this dependence. However, this approach assumes
that the hyperspectral observations are noise-free. Alternatively,
nonnegative matrix factorization (NMF) [26] can also be used
to solve BSS problem under nonnegativity constraints. In [27],
an NMF algorithm that consists of alternately updating the sig-
nature and abundance matrices has been successfully applied to
identify constituent in chemical shift imaging. In this work, the
additivity constraint has not been taken into account. Basic sim-
ulations conducted on synthetic images show that such MNF
strategies lead to weak estimation performances. In [28], an it-
erative algorithm called ICE (iterated constrained endmembers)
is proposed to minimize a penalized criterion. As noted in [25],
results provided by ICE strongly depend on the choice of the
algorithm parameters. More recently, Miao et al. have proposed
in [29] another iterated optimization scheme performing NMF
with an additivity penalty on the abundance coef�cients. How-
ever, as this is not a hard constraint, it is not necessarily ensured.
In addition the performance of the algorithm in [29] degrades
signi�cantly when the noise level increases.

The Bayesian model studied in this paper uses a Gibbs sam-
pling algorithm to ef�ciently solve the constrained spectral un-
mixing problem without requiring the presence of pure pixels in
the hyperspectral image. In many works, Bayesian estimation
approaches have been adopted to solve BSS problems (see for
example [30]) like LSMA. The Bayesian formulation allows one
to directly incorporate constraints into the model. These con-
straints include sparsity [31]; nonnegativity [32]; full additivity
(sum-to-one constraint) [33]. In this paper, prior distributions
are proposed for the abundances and endmember spectra to en-
force the constraints inherent to the hyperspectral mixing model.
These constraints include nonnegativity and full-additivity of
the abundance coef�cients (as in [19] and [34]) and nonnega-
tivity of the endmember spectra. To our knowledge, this is the
�rst time that nonnegativity constraints for endmember spectra
as well as additivity and nonnegativity constraints for the abun-
dances are jointly considered in a Bayesian model for hyper-
spectral imagery. In [34], Parra et al. propose a Bayesian for-
mulation of the endmember and abundance estimation problem.
However, this approach relies on an ad hoc autoregressive model
of the endmember spectra, which does not necessarily ensure the
required positivity constraints. In addition, the MAP estimator
proposed in [34] requires an optimization scheme whose con-
vergence is dif�cult to assess.

Moreover, the proposed joint LSMA approach is able to
solve the endmember spectrum estimation problem directly
on a lower dimensional space within a Bayesian framework.
We believe that this is one of the principal factors leading to
performance improvements that we show on simulated and real
data in Sections V and VI. By estimating the parameters on the
lower dimensional space we effectively reduce the number of

degrees of freedom of the parameters relative to other methods
(e.g., [32], [34], and [35]), translating into lower estimator bias
and variance. The problem of hyperparameter selection in our
Bayesian model is circumvented by adopting the hierarchical
Bayesian approach of [19] that produces a parameter-inde-
pendent Bayesian posterior distribution for the endmember
spectra and abundances. To overcome the complexity of the
full posterior distribution, a Gibbs sampling strategy is derived
to approximate standard Bayesian estimators, e.g., the min-
imum mean squared error (MMSE) estimator. Moreover, as
the full posterior distribution of all the unknown parameters is
available, con�dence intervals can be easily computed. These
measures allow one to quantify the accuracy of the different
estimates.

The paper is organized as follows. The observation model is
described in Section II. The different quantities necessary for the
Bayesian formulation are enumerated in Section III. Section IV
presents the proposed Gibbs sampler for joint abundance and
endmember estimation. Simulation results obtained with syn-
thetic and real AVIRIS data are reported in Sections V and VI
respectively. Section VII concludes the paper. An appendix pro-
vides details on our parameterization of the simplex and se-
lecting relevant and tractable priors.

II. LINEAR MIXING MODEL AND PROBLEM STATEMENT

Consider pixels of an hyperspectral image acquired
in spectral bands. According to the linear mixing model
(LMM), described for instance in [4], the -spectrum

of the th pixel is
assumed to be a linear combination of spectra corrupted
by an additive Gaussian noise

(1)

where denotes the spectrum of the
th material, is the fraction of the th material in the th

observation, is the number of materials, is the number of
available spectral bands and is the number of observations
(pixels). Moreover, in (1), is an ad-
ditive noise sequence which is assumed to be an independent
and identically distributed (i.i.d.) zero-mean Gaussian sequence
with covariance matrix , where is the identity
matrix of dimension , i.e.,

(2)

The proposed model in (2) does not account for any possible
correlation in the noise sequences but has been widely adopted
in [35]�[37]. However, simulation results reported in paragraph
V-D will show that the proposed algorithm is robust to the vio-
lation of the i.i.d. noise assumption. Note �nally that the model
in (1) can be easily modi�ed (see [38]) to handle more com-
plicated noise models with different variances in each spectral
band as in [39], or by taking into account correlations between
spectral bands as in [19].
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Fig. 1. Range of admissible solution for two endmember spectra: construction
concrete (left) and red brick (right). The actual endmember (red lines) are mixed
according (1) under the constraints in (3) with random proportions to obtain
� � ���� pixels. 50 admissible solutions (blue lines) of the BSS problems in
(6) are generated using [42].

Due to physical considerations, described in [3], [19] or [40],
the fraction vectors in (1) satisfy the
following nonnegativity and full-additivity (or sum-to-one) con-
straints

,
(3)

In other words, the abundance vectors belong to the space

(4)

where is the norm de�ned as , and
stands for the set of inequalities . Moreover,
the endmember spectra component must satisfy the fol-
lowing nonnegativity constraints

(5)

Considering all pixels, standard matrix notation yields

(6)

where

(7)

In this work, we propose to estimate and from the noisy
observations under the constraints in (3) and (5). Note
that the unconstrained BSS problem for estimating M and A
from Y is ill-posed: if is an admissible estimate then

is also admissible for any unitary matrix H. In
the LSMA problem, this nonuniqueness can be partially circum-
vented by additional constraints such as full-additivity, which
enables one to handle the scale indeterminacy. Consequently,
these unit -norm constraints on the abundance vectors avoid
using more complex strategies for direct estimation of the scale
[41]. Despite the constraints in (3) and (5), uniqueness of the
couple solution of the LSMA (6) is not systematically
ensured. To illustrate this problem, 50 admissible solutions2

2Admissible solutions refer to couples ����� that satisfy (3) and (5) and
that follow the model (1) in the noise-free case.

have been depicted in Fig. 1 for endmembers involved in
the mixing of pixels [42]. In the following section,
the Bayesian model used for the LSMA is presented.

III. BAYESIAN MODEL

A. Likelihood

The linear mixing model de�ned in (1) and the statistical
properties in (2) of the noise vector result in a conditionally
Gaussian distribution for the observation of the th pixel: ,

, . Therefore, the likelihood function
of can be expressed as

(8)

where is the norm. Assuming indepen-
dence between the noise sequences , the like-
lihood function of all the observations is

(9)

B. Prior Model for the Endmember Spectra

1) Dimensionality Reduction: It is interesting to note that the
unobserved matrix is rank de�cient under
the linear model (1). More precisely, the set

(10)

is a -dimensional convex polytope of whose vertices
are the endmember spectra to be recov-
ered. Consequently, in the noise-free case, can be represented
in a suitable lower-dimensional subset of

without loss of information. To illustrate this property,
pixels resulting from a noise-free mixture of

endmembers are represented in Fig. 2. As noted in [4], dimen-
sionality reduction is a common step of the LSMA, adopted by
numerous EEAs, such as N-FINDR [9] or PPI [8]. Similarly, we
propose to estimate the projection of the end-
member spectra in the subspace . The identi�cation of
this subspace can be achieved via a standard dimension reduc-
tion procedure. In the sequel, we propose to de�ne as the
subspace spanned by orthogonal axes identi�ed
by a principal component analysis (PCA) on the observations
[43]

(11)

The �rst two principal axes are identi�ed in Fig. 2 for the syn-
thetic hyperspectral data. In the following paragraph, PCA is
described. While we do not give details here, this PCA-based
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Fig. 2. Example of hyperspectral data observed in 3 spectral bands. The mixed
pixels (blue points) belong to the �-dimensional convex polytope � (red
lines) whose vertices are the endmembers spectra� � � � � �� (red stars). The
�rst two principal axes estimated by a PCA appear in dashed lines and de�ne
the projection subset � .

dimension reduction step can be easily replaced by other pro-
jection techniques, such as the maximum noise fraction (MNF)
transform [44] that has been considered in paragraph V-D.

2) PCA Projection: The empirical covariance matrix
of the data is given by

(12)

where is the empirical mean

(13)

Let

(14)

denote, respectively, the diagonal matrix of the highest eigen-
values and the corresponding eigenvector matrix of . The PCA
projection of the endmember spectrum is
obtained as follows:

(15)

with . Equivalently

(16)

with . Note that in the subspace obtained
for , the vectors form a simplex
that standard EEAs such as N-FINDR [9], MVT [11] and

ICE [28] try to recover. In this paper, we estimate the ver-
tices of this simplex using a Bayesian
approach. The Bayesian prior distributions for the projections

are introduced in the following paragraph.
3) Prior Distribution for the Projected Spectra: All the el-

ements of the subspace may not be appropriate projected
spectra according to (15). Indeed, the vector has to en-
sure nonnegativity constraints (5) of the corresponding recon-
structed spectra . For each endmember , straight-
forward computations establish that for any

(17)

where the set is de�ned by the following inequali-
ties:

(18)

with and . A conjugate3 multi-
variate Gaussian distribution (MGD) truncated
on the set is chosen as prior distribution for . The prob-
ability density function (pdf) of this truncated MGD is
de�ned by

(19)

where stands for �proportional to�, is the pdf of
the standard MGD with mean vector and covari-
ance matrix , and is the indicator function on the set

if ;
overwise. (20)

The normalizing constant in (19) is de�ned as
follows:

(21)

This paper proposes to select the mean vectors
in (19) as the projected spectra of pure components

previously identi�ed by EEA, e.g., N-FINDR. The variances
re�ect the degree of con�dence given to this

prior information. When no additional knowledge is available,
these variances are �xed to large values (
in our simulations).

By assuming a priori independence of the vectors
, the prior distribution for the projected endmember

matrix is

(22)

where and .
3For the main motivations of choosing conjugate priors, see for instance [45,

Ch. 3].

Authorized licensed use limited to: INP TOULOUSE. Downloaded on October 13, 2009 at 13:43 from IEEE Xplore.  Restrictions apply. 



DOBIGEON et al.: JOINT BAYESIAN ENDMEMBER EXTRACTION 4359

C. Abundance Prior

For each observed pixel , with the full additivity constraint
in (3), the abundance vectors can be rewritten
as

...

and . Following the model in [19], the
priors chosen for are uniform distributions
on the simplex de�ned by

(23)

Choosing this prior distribution for is equiv-
alent to electing a Dirichlet distribution , i.e., a uni-
form distribution on de�ned in (4), as prior distribution for
the full abundance vector [45, Appendix A]. However, the
proposed reparametrization will prove to be well adapted to the
Gibbs sampling strategy introduced in Section IV. Under the
assumption of statistical independence between the abundance
vectors , the full prior distribution for partial
abundance matrix can be written

(24)

As noted in [19], the uniform prior distribution re�ects a lack
of a priori knowledge about the abundance vector. As men-
tioned in [25], it might be interesting to consider nonuniform
priors for the abundances when considering images in which
there are not spectral vectors in some or in all the simplex facets.
For instance, following the approach in [25], Dirichlet distribu-
tions could be proposed as priors for the abun-
dance vectors. However, as direct estimation of the hyperparam-
eters remains dif�cult, this modi�cation might sig-
ni�cantly increase the complexity of the Bayesian model and
the computational cost of the algorithm. Moreover, for the BSS
problem addressed in this work, the uniform prior in (24) im-
poses a strong constraint on the size of the simplex to be re-
covered. As demonstrated in the Appendix, among two a priori
equiprobable solutions of the BSS problem, the uniform prior al-
lows one to favor a posteriori the solution corresponding to the
polytope in the projection subset having smallest volume.
This property has also been exploited in [11].

D. Noise Variance Prior

A conjugate prior is chosen for

(25)

where denotes the inverse-gamma distribution
with parameters and . As in previous works [46], [47],
the hyperparameter will be �xed to . On the other hand,

will be a random and adjustable hyperparameter, whose prior
distribution is de�ned below.

E. Prior Distribution for Hyperparameter

The prior for is a noninformative Jeffreys� prior [48] which
re�ects the lack of knowledge regarding this hyperparameter

(26)

F. Posterior Distribution

The posterior distribution of the unknown parameter vector
can be computed from marginalization using

the following hierarchical structure:

(27)

where and are de�ned in (9) and (26), respec-
tively. Moreover, under the assumption of a priori independence
between , and , the following result can be obtained:

(28)

where , and have been de�ned
in (24), (22) and (25), respectively. This hierarchical structure
allows one to integrate out the hyperparameter from the joint
distribution , yielding

(29)

where . Deriving the Bayesian esti-
mators (e.g., MMSE or MAP) from the posterior distribution in
(29) remains intractable. In such case, it is very common to use
Markov chain Monte Carlo (MCMC) methods to generate sam-
ples asymptotically distributed according to the posterior dis-
tribution. The Bayesian estimators can then be approximated
using these samples. The next section studies a Gibbs sampling
strategy allowing one to generate samples distributed according
to (29).

IV. GIBBS SAMPLER

Random samples (denoted by where is the iteration
index) can be drawn from using a Gibbs sam-
pler [49]. This MCMC technique consists of generating samples

distributed according to the conditional pos-
terior distributions of each parameter.
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A. Sampling From
Straightforward computations yield for each observation

(30)

where

(31)
with and where denotes the matrix
whose th column has been removed. As a consequence, ,

, is distributed according to an MGD truncated on the sim-
plex in (23)

(32)

Note that samples can be drawn from an MGD truncated on a
simplex using ef�cient Monte Carlo simulation strategies such
as described in [50].

B. Sampling From
De�ne as the matrix whose th column has been re-

moved. Then the conditional posterior distribution of
is

(33)

with

(34)

and
(35)

Note that . As a consequence, the posterior
distribution of is the following truncated MGD

(36)

Generating vectors distributed according to this distribution is
a dif�cult task, mainly due to the truncation on the subset .
An alternative consists of generating each component of

conditionally upon the others . More pre-
cisely, by denoting ,
and , one can write

(37)

with

(38)

and where and are the conditional mean and variance,
respectively, derived from the partitioned mean vector and co-

variance matrix [51, p. 324] (see [50] for similar computations).
Generating samples distributed according to the two-sided trun-
cated Gaussian distribution in (37) can be easily achieved with
the algorithm described in [52].

C. Sampling From

The conditional distribution of , , is the following
inverse Gamma distribution:

(39)

Simulating according to this inverse Gamma distribution can be
achieved using a Gamma variate generator (see [53, Ch. 9] and
[45, Appendix A]).

To summarize, the hyperparameters that have to be �xed at
the beginning of the algorithm are chosen as follows: ,

and are set to projected
spectra identi�ed by a standard EEA (e.g., N-FINDR).

V. SIMULATIONS ON SYNTHETIC DATA

To illustrate the accuracy of the proposed algorithm, simula-
tions are conducted on a 100 100 synthetic image. This hyper-
spectral image is composed of three different regions with

pure materials representative of a suburban scene: construc-
tion concrete, green grass and red brick. The spectra of these
endmembers have been extracted from the spectral libraries dis-
tributed with the ENVI software [54] and are represented in
Fig. 3 (top, black lines). The re�ectances are observed in

spectral bands ranging from 0.4 to 2.5 . These
components have been mixed with proportions that have been
randomly generated according to MGDs truncated on the sim-
plex with means and variances reported in Table I. The gen-
erated abundance maps have been depicted in Fig. 4 (top) in
gray scale where a white (respectively, black) pixel stands for
the presence (resp. absence) of the material. The signal-to-noise
ratio has been tuned to .

A. Endmember Spectrum Estimation

The resulting hyperspectral data have been unmixed by
the proposed algorithm. First, the space in (11) has been
identi�ed by PCA as discussed in Section III-B-2. The hidden
mean vectors of the normal distributions in
(19) have been chosen as the PCA projections of endmembers
previously identi�ed by N-FINDR. The hidden variances
have all been chosen equal to to obtain
vague priors (i.e., large variances). The Gibbs sampler has been
run with iterations, including burn-in
iterations. The MMSE estimates of the abundance vectors

and the projected spectra
have been approximated by computing empirical averages over
the last computed outputs of the sampler and

, following the MMSE principle

(40)
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Fig. 3. Actual endmembers (black lines), endmembers estimated by N-FINDR (blue lines), endmembers estimated by VCA (green lines) and endmembers esti-
mated by proposed approach (red lines).

TABLE I
ABUNDANCE MEANS AND VARIANCES OF EACH ENDMEMBER IN EACH REGION

OF THE 100� 100 HYPERSPECTRAL IMAGE

The corresponding endmember spectra estimated by the pro-
posed algorithm are depicted in Fig. 3 (top, red lines). The pro-
posed algorithm clearly outperforms N-FINDR and VCA, as
shown in Fig. 3. The scatter plot in Fig. 5 provides additional
insight. The N-FINDR and VCA algorithms assume the pres-
ence of pure pixels in the data. However, as none of these pixels
are pure, N-FINDR and VCA provide poorer results than the
proposed joint Bayesian algorithm. To illustrate this point, the
performances of the different algorithms have been compared
via two criteria. First, the mean square errors (MSEs)

(41)

are good quality indicators for the estimates. In addition, an-
other metric frequently encountered in hyperspectral imagery
literature, known as the spectral angle distance (SAD), has been
considered. The SAD measures the angle between the actual and
the corresponding estimated spectrum

(42)

where stands for the scalar product. These performance cri-
teria computed for the endmember spectra estimated by the dif-
ferent algorithm are reported in Table II. They show that the

Fig. 4. Top: actual endmember abundance maps. Bottom: estimated end-
member abundance maps.

proposed method performs signi�cantly better than the others.
The computation times required by each of these algorithms
are reported in Table III for an unoptimized MATLAB 2007b
32-bit implementation on a 2.2-GHz Intel Core 2. Obviously,
the complexity of the VCA and N-FINDR methods are lower
than the proposed approach. Note however that, unlike to the
joint Bayesian procedure, these standard EEA must be coupled
with an abundance estimation algorithm. Moreover they only
provide point estimates of the endmember spectra. Note �nally
that the computational complexity of N-FINDR, because it is
combinatorial, increases drastically with the number of pixels
and endmembers.
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TABLE II
PERFORMANCE COMPARISON BETWEEN VCA, N-FINDR AND THE PROPOSED BAYESIAN METHOD: ��� AND SAD ���� � BETWEEN THE ACTUAL

AND THE ESTIMATED ENDMEMBER SPECTRA

TABLE III
COMPUTATIONAL TIMES OF VCA, N-FINDR AND THE PROPOSED BAYESIAN
METHOD FOR UNMIXING � � 	
� 	
 PIXELS WITH � � 	 ENDMEMBERS

B. Abundance Estimation

The MMSE estimates of the abundance vectors for the
pixels of the image have been computed following

the MMSE principle in (40)

(43)

The corresponding estimated abundance maps are depicted in
Fig. 4 (bottom) and are clearly in good agreement with the sim-
ulated maps (top).

Note that the proposed Bayesian estimation provides the
joint posterior distribution of the unknown parameters. Speci�-
cally, these posteriors allow one to derive con�dence intervals
regarding the parameters of interest. For instance, the posterior
distributions of the abundance coef�cients are depicted in Fig. 6
for pixel number 100. Note that these estimated posteriors are
in good agreement with the actual values of depicted in
red dotted lines.

Fig. 5. Scatter plot in the lower-dimensional space � : projected dataset
(black points), actual endmembers (black circles), endmembers estimated
by N-FINDR (blue stars), endmembers estimated by VCA (green stars) and
endmembers estimated by proposed approach (red stars). All pixel spectra do
not lie inside ground truth simplex due to simulated measurement noise.

These results have been compared with estimates provided
by the N-FINDR or VCA algorithms, coupled with an abun-
dance estimation procedure based on the fully constrained least-
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