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Abstract— This paper studies a semi-supervised algorithm
for linear hyperspectral unmixing. The proposed unmixing
method assumes that the pure material spectra denoted as
endmembers belong to a library that is a priori available.
However, the number and the nature of endmembers appear-
ing in the pixel are not known a priori, resulting in a model
selection problem. This paper proposes to handle this model
selection problem within a fully Bayesian framework. First,
appropriate distributions are elected as prior distributions for
the unknown parameters. Particularly, a distribution defined
on a simplex is chosen as prior for an appropriate partial
abundance vector to ensure the positivity and the sum-to-one
constraints of the mixing coefficients. Due to the complexity
of the posterior distribution, a reversible jump Markov chain
Monte Carlo algorithm is proposed to estimate the number
and the nature of the macroscopic materials, as well as their
respective proportions in the pixel. The accuracy of the pro-
posed method is illustrated by simulations on synthetic hy-
perspectral data.

1. INTRODUCTION

For few decades, hyperspectral imagery has been receiv-
ing increasing interest in the geoscience and image process-
ing literatures [1]. Indeed, current spectro-imagers, such as
AVIRIS, CASI or Hyperion, are able to acquire a same scene
in several hundreds of contiguous bands, providing spectrally
resolved images. Hyperspectral imagery has demonstrated
its interest for numerous applications. These applications in-
clude geologic cartography [2], environmental [3] or military
monitoring [4]. However, to benefit from the amount of infor-
mation contained in these images, innovative strategies have
to be developed to improve the accuracy of standard estima-
tion, detection and classification algorithms [5]. One of the
main steps in the analysis of such images consists of identi-
fying the pure materials, or endmembers that are present in
the observed scene. Then, an inversion step estimates their
respective proportions in each pixel. This paper introduces a
semi-supervised algorithm that can be used to perform this
so-called spectral unmixing. In the literature, two models
have been investigated to describe how endmember mixing
is achieved. According to the first model, the observed pixel
spectrum is assumed to be related to the unobserved material
spectra via a linear mixture whose coefficients are the concen-
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trations, or abundances, of the macroscopic components in
the pixel [6]. The second model introduced in [7] refers to an
intimate model that assumes a non-linear combination of the
endmembers. However, as noted in [8], this intimate model
can be easily linearized. Consequently, this paper concen-
trates on the Linear Mixing Model (LMM) that has received
considerable attention in the literature [9], [10].

The proposed unmixing method assumes that the pure mate-
rial spectra belong to a library that is a priori available. In our
work, the number and the nature of endmembers appearing in
the pixel are not known a priori. Estimating the number and
the nature of the endmembers involved in the mixture is a
classical model selection task. In this paper, this challenging
problem will be handled within a fully Bayesian framework.
Due to obvious physical reasons, the abundance vectors have
to satisfy positivity and sum-to-one constraints. The Bayesian
estimation procedure proposed here allows one to incorporate
these constraints easily into the model. First, appropriate dis-
tributions are elected as prior distributions for the unknown
parameters. Particularly, a distribution defined on a simplex
is chosen as prior for an appropriate partial abundance vec-
tor to ensure the positivity and the additivity of the mixing
coefficients, as in [11]. Because of the complexity of the
posterior distribution, deriving standard Bayesian estimators
remains difficult. In such cases, stochastic simulation meth-
ods can be used to overcome the difficulty. In this paper, a
Markov chain Monte Carlo (MCMC) algorithm is proposed
to generate samples asymptotically distributed according to
the posterior distribution of the abundances and endmembers.
Then, the generated samples will be used to approximate the
Bayesian estimators. More precisely, as the number of end-
members is not a priori known, the unknown full parameter
vector belongs to a space with unknown dimension. A re-
versible jump MCMC algorithm will allow ones to explore
spaces with different dimensions [12].

This paper is organized as follows. The linear unmixing prob-
lem for hyperspectral images is formulated in Section 2. The
hierarchical Bayesian model associated to this problem is de-
scribed in Section 3. Section 4 details the reversible jump
MCMC algorithm that generates samples distributed accord-
ing to the abundance and endmember distribution. Simula-
tion results obtained from synthetic hyperspectral data are
presented in Section 5. Conclusions are reported in Section 6.
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2. PROBLEM FORMULATION

In this section, we describe the observation model which is
classically assumed to perform spectral unmixing of hyper-
spectral pixels. As noticed in the previous section, this pa-
per focuses on the LMM that constitutes a good approxima-
tion in the reflective domain ranging from 0.4µm to 2.5µm
(see [5] and [9]). The LMM assumes that the spectrum
y = [y1, . . . , yL]T of a mixed pixel is a linear combination of
R endmember spectramr corrupted by additive noise:

y =
R∑
r=1

mrαr + n, (1)

whereL is the number of available spectral bands of the pixel,
mr = [mr,1, . . . ,mr,L]T is the spectrum of the rth material,
αr is the fraction of the rth material in the pixel and R is
the number of pure materials (or endmembers) present in the
observed pixel. Here we consider n = [n1, . . . , nL]T as an
additive white noise sequence which is classically assumed to
be an independent and identically distributed (i.i.d.) Gaussian
sequence with variance σ2, denoted as n ∼ N

(
0L, σ2IL

)
,

where IL and 0L are the identity matrix of dimension L× L
and the L × 1 vector made of 0’s, respectively. Note that
more complicated noise models that take into account some
correlations might be studied (see for instance [13]).

Due to physical reasons, the abundance vector α (R) =
[αr, . . . , αR]T has to ensure the following non-negativity and
sum-to-one constraints:{

αr ≥ 0, ∀r = 1, . . . , R,∑R
r=1 αr = 1.

(2)

It is important to mention here that the numberR of endmem-
bers involved in the mixture is not known a priori. However,
the endmember spectra mr (r = 1, . . . , R) belong to a spec-
tral library

S =
{
s1, . . . , sRmax

}
, (3)

composed of Rmax materials. These endmember spectra sr
(r = 1, . . . , Rmax) have been for instance identified by one
of the numerous endmember extraction algorithms such as
N-FINDR [14], MVT [15] or ICE [16].

The problem addressed in this paper consists of estimating the
number of endmembers R, the spectra mr (r = 1, . . . , R),
the fraction coefficient αr (r = 1, . . . , R) and the noise vari-
ance σ2 under the constraints in (2) given the observed pixel
y and the spectral library S.

3. HIERARCHICAL BAYESIAN MODEL

Likelihood

The LMM (1) and the statistical properties of the noise vec-
tor yield y|R,M,α, σ2 ∼ N (Mα, σ2IL), where M =
[m1, . . . ,mR]. Consequently, the likelihood function of y

can be expressed as:

f(y|R,α,M, σ2) =
(

1
2πσ2

)L
2

exp

[
−‖y −Mα‖2

2σ2

]
,

(4)
where ‖x‖ =

√
xTx is the standard `2 norm.

Parameter priors

Prior for the number of endmembers — A discrete uniform
distribution on [1, . . . , Rmax] is chosen for the prior associ-
ated to the number of mixture components R:

f (R) =
1

Rmax
, R = 1, . . . , Rmax. (5)

Endmember matrix prior — Conditionally upon the number
R of materials involved in the mixture, all combinations of R
spectra belonging to the library S are assumed to be equiprob-
able:

f(M | R) =
(
Rmax

R

)−1

=
Γ (R+ 1) Γ (Rmax −R+ 1)

Γ (Rmax + 1)
,

(6)

where Γ (·) denotes the Gamma function.

Abundance prior — The abundance vector can be written as
α =

[
cT , αR

]T
with c = [α1, . . . , αR−1]T and αR = 1 −∑R−1

r=1 αr. The constraints (2) inherent to the LMM impose
that c belongs to the simplex S defined by:

SR =

{
c

∣∣∣∣∣cr ≥ 0, ∀r = 1, . . . , R− 1,
R−1∑
r=1

cr ≤ 1

}
. (7)

To reflect the absence of prior knowledge regarding the abun-
dance vector, a uniform distribution on S is chosen as prior
distribution for c:

f (c|R) =
1

vol (SR)
1SR

(c), (8)

where 1SR
(·) stands for the indicator function defined on SR:

1SR
(c) =

{
1, if c ∈ SR;
0, otherwise. (9)

Noise variance prior — A conjugate inverse Gamma distribu-
tion is chosen as prior distribution for σ2:

σ2 | ν, γ ∼ IG
(ν

2
,
γ

2

)
, (10)

where ν will be fixed to ν = 2 (as in [17]) and γ is an ad-
justable hyperparameter.
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Hyperparameter prior distribution

The accuracy of the unmixing procedure may depend on the
value of the unknown hyperparameter γ. As in [11], the hi-
erarchical model proposed here uses a non-informative Jef-
freys’ prior for γ:

f (γ) ∝ 1
γ

1R+(γ). (11)

Posterior distribution

The posterior distribution of the unknown parameter vector
θ =

{
R,M,α, σ2

}
can be computed from the following hi-

erarchical structure:

f(θ|y) ∝
∫
f(y|θ)f(θ|γ)f(γ)dγ, (12)

where ∝ means “proportional to”, f (y|θ) and f (γ) have
been defined in (4) and (11). Conditionally upon R, by as-
suming the prior independence between σ2, c and M i.e.
f (θ|γ) = f (R) f (c|R) f (M|R) f(σ2|ν, γ), the hyperpa-
rameter γ can be integrated out from the joint distribution
f (θ, γ|y), yielding:

f
(
R, c,M, σ2|y

)
∝ 1
σL+2

exp

[
−‖y −Mα‖2

2σ2

]

× 1
vol (SR)

f (R) f (M|R) 1SR
(c), (13)

where the dimensions of M and α depend on the unknown
parameter R. The next section shows that an appropri-
ate hybrid Gibbs sampling strategy allows one to gener-
ate samples distributed according to the joint distribution
f(R, c,M, σ2|y).

4. REVERSIBLE JUMP MCMC ALGORITHM

This section studies an hybrid Metropolis-within-Gibbs al-
gorithm that samples according to f

(
R, c,M, σ2|y

)
. The

vectors to be sampled belong to a space whose dimension de-
pends on R, requiring to use a dimension matching strategy
as in [12], [18], [19]. More precisely, the proposed algorithm
consists of three different moves:

1. updating the endmember spectrum matrix M,
2. updating the endmember abundance vector c,
3. updating the noise variance σ2.

These three moves are scanned systematically as in [12].
They are detailed below.

Updating the endmember spectrum matrix M

The endmember spectra involved in the mixture (1) are up-
dated by using three kinds of move. These moves are called
birth, death and switch moves, as in [20, p. 53]. The first two
moves consist of increasing or decreasing the number of pure

components by 1. These moves allow the sampler to explore
sets with different dimensions. Thus, they require the use of
the reversible jump MCMC algorithm [12]. The third move
does not affect the model dimension and requires a standard
Metropolis-Hastings algorithm.
Assume that at iteration t of the sampler, the current model
is defined by the vector θ(t) =

{
R(t),M(t), c(t), σ2(t)

}
. The

three moves are defined as follows.

Birth — A birth move is proposed with the probability bR(t) .
The current number of endmember R(t) is increased by 1

R? = R(t) + 1.

A new spectrum m? is randomly chosen with equal proba-
bility1 among the available materials of the spectral library
S. The new endmember matrix M? is:

M? =
[
M(t),m?

]
.

A new corresponding abundance has to be drawn ensuring the
constraints in (2). This coefficient α(t) is proposed according
a rule inspired by [18]:

• draw a new abundance coefficient w? from the Beta distri-
bution Be

(
1, R(t)

)
,

• re-scale the existing fractions so that all of them sum to 1:

αr
? = α(t)

r (1− w?) , r = 1, . . . , R(t), (14)

• set α? = [α1
?, . . . , αR

?, w?]T .

Death —A death move is proposed with the probability dR(t) .
The current number of endmember R(t) is decreased by 1:

R? = R(t) − 1.

One of the spectra chosen with equal probability in the end-
member matrix M(t) is removed, as well as the correspond-
ing abundance coefficient. The remaining abundances coeffi-
cients are re-scaled to sum to 1.

Switch — A switch move is proposed with the probability
uR(t) . A spectrum randomly chosen in M(t) is replaced by
another spectrum randomly chosen in the library S.

At iteration t of the sampler, one of the moves birth, death
and switch is randomly chosen with the probabilities bR(t) ,
dR(t) and uR(t) , with bR(t) + dR(t) + uR(t) = 1. Of course,
the death move is not allowed for R(t) = 1 and the birth
move is impossible for R(t) = Rmax, i.e. d1 = bRmax = 0.
The different moves are assumed to be equiprobable such that
bR(t) = dR(t) = uR(t) = 1

3 for R(t) ∈ {1, . . . , Rmax − 1}
and b1 = u1 = dRmax = uRmax = 1

2 . The acceptance rates
of the birth and death moves are ρ = min {1, Ab} and ρ =

1Of course, when prior knowledge regarding the probability of each spec-
trum to be in the image is available, this information can be used to randomly
select a spectrum of the library.
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min
{

1, A−1
b

}
, respectively, with (see [11] for more details):

Ab = exp

[
−
‖y −M?α?‖2 −

∥∥y −M(t)α(t)
∥∥2

2

]

×
dR(t)+1

bR(t)

1
g1,R(t) (w?)

(1− w?)R
(t)−1

×
Γ
(
δR(t) + δ

)
Γ
(
δR(t)

)
Γ (δ)

w?δ−1 (1− w?)(δ−1)R(t)

,

(15)

with δ = 1.

The acceptance probability for the switch move is the stan-
dard Metropolis Hastings ratio ρ = min {1, As} with

As = exp

[
−
‖y −M?α?‖2 −

∥∥y −M(t)α(t)
∥∥2

2

]
. (16)

Updating the endmember abundance vector c

Updating the endmember abundance vector c is classically
conducted by generating samples c(t) according to the poste-
rior conditional distribution f

(
c|R,M, σ2,y

)
. By denoting

M−R the matrix M whose Rth column has been removed,
i.e. M−R = [m1, . . .mR−1], this conditional distribution is

f
(
c|R,M, σ2,y

)
∝

exp

[
− (c− µ)T Λ−1 (c− µ)

2

]
1S(α), (17)

where Λ =
[

1
σ2

(
M−R −mRuT

)T (
M−R −mRuT

)]−1

,

µ = Λ
[

1
σ2

(
M−R −mRuT

)T (y −mR)
]
,

(18)
with u = [1, . . . , 1]T ∈ RR−1. This distribution indi-
cates that c|R,M, σ2,y is distributed according to a trun-
cated Gaussian distribution:

c|R,M, σ2,y ∼ NS (µ,Λ) . (19)

As in [11], sampling according to a truncated Gaussian distri-
bution can be achieved using a standard accept-reject proce-
dure, when the number of endmembers is relatively small (as
in the examples studied in this paper). More efficient simu-
lation techniques based on Gibbs moves can be used for high
dimension problems (see [21] or [22] for more details).

Updating the noise variance σ2

Integrating out the hyperparameter γ from the joint posterior
distribution f (θ, γ|y) leads to:

σ2|R,α,M,y ∼ IG

(
L

2
,
‖y −Mα‖2

2

)
, (20)

from which it is straightforward to sample.

5. SIMULATION RESULTS

This section presents simulation results conducted on a syn-
thetic mixed pixel. This pixel results from the combination
of three endmembers (green grass, bare red brick, galvanized
steel metal) with the abundance vector [0.4, 0.2, 0.4]T . The
observation is corrupted by an additive Gaussian noise with
signal to noise ratio SNR = 20dB. A typical resulting mixed
pixel is depicted in Fig. 1 (below).

Figure 1. Top: endmember spectra: green grass (solid line),
bare red brick (dotted line), galvanized steel metal (dashed
line). Bottom: resulting spectrum of the mixed pixel (SNR =
20dB).

This simulation considers a spectrum library composed of 6
endmembers that are provided by the ENVI software [23, p.
1035]. These spectra, representative of a urban or suburban
environment, are depicted in Fig. 2.

Figure 2. Endmember spectra of the library.

The results presented here are obtained for NMC = 20000
iterations, including Nbi = 200 burn-in iterations. The first
step of the analysis consists of identifying the different com-
binations of endmembers in the matrices M(t) generated by
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the sampler. Among the Nr = NMC − Nbi matrices M(t)

drawn by the sampler, 7 different combinations of spectra
from the library S have been generated. The probabilities
of each of these combination occurrence, depicted in Fig. 3,
are clearly in favor of the endmember matrix M = [s2s5s6],
which is in good agreement with the mixing scenario. Indeed,
the maximum probability P [M = [s2, s5, s6] | y] = 0.98
corresponds to the actual spectra involved in the mixture.

Figure 3. Posterior probabilities of occurrence of the end-
member combinations.

The posterior distributions of the corresponding abundances
are finally estimated following the MMSE principle:

ĉMMSE =
1
Nr

Nr∑
t=1

c(Nbi+t). (21)

Conditionally upon the maximum a posteriori estimate of
the endmember matrix M̂MAP = [s2, s5, s6], the poste-
rior distributions of the corresponding abundance coefficients
are depicted in Fig. 4. These posteriors are clearly in good
agreement with the actual values of the abundances α =
[0.4, 0.2, 0.4]T .

The performance of the proposed algorithm is compared with
a fully supervised Bayesian approach similar to [11]. First,
100 synthetic signals have been generated as described above:
α = [0.4, 0.2, 0.4]T , M = [s2, s5, s6], SNR = 20dB. The
supervised algorithm assumes that the 6 endmember spectra
of the library (depicted in Fig. 2) are involved in the mix-
ture. Hence, with this approach, the vector to be estimated is
[0.0, 0.4, 0.0, 0.0, 0.2, 0.4]T . The mean squared errors (MSE)
for the supervised algorithm and our library-based algorithm
are reported in Table 1. These results show that the proposed
semi-supervised approach outperforms the supervised algo-
rithm.

6. CONCLUSIONS

This paper presented a hierarchical Bayesian model for hy-
perspectral linear unmixing. This model relied on appropri-
ate prior distributions chosen for the unknown parameters.

Figure 4. Posterior distribution of the estimated abundances
α = [α1, α2, α3]T conditioned upon M = [s2, s5, s6].

Table 1. MSE for supervised and semi-supervised
algorithms

Supervised Semi-supervised
MSE 5.4× 10−2 4.7× 10−2

It provided the posterior distribution of the abundance co-
efficients that can be used for their estimation. Assuming
that the endmembers belong to a known spectral library, a
reversible-jump MCMC method allowed one to identify the
macroscopic materials actually involved in the mixture. In
that sense, it constituted an original semi-supervised algo-
rithm for linear unmixing of hyperspectral images.
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