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ABSTRACT

Subspace estimation using relatively few samples is a frequently en-

countered problem in numerous applications, including hyperspec-

tral imagery the target application of this paper. We address this

problem in a Bayesian framework assuming that some rough prior

knowledge about the subspace is available. Our approach is based on

the CS decomposition of an orthogonal matrix whose columns span

the subspace of interest. This parametrization only involves mild

assumptions about the distribution of the angles between the actual

subspace and the prior subspace, and is intuitively appealing. We

derive the posterior distribution for the matrices involved in the CS

decomposition and the angles between subspaces, and we propose a

Gibbs sampling scheme to compute the minimum mean-square dis-

tance estimator of the subspace of interest. The estimator accuracy

is evaluated through numerical simulations and tested against real

hyperspectral data.

1. MOTIVATION AND PROBLEM STATEMENT

Hyperspectral imagery is becoming increasingly used in earth obser-

vation systems due to its potentially more accurate analysis of earth

surfaces [1]. It consists of collecting, in a large number of spectral

bands, the electromagnetic signal reflected by the earth surface when

illuminated by solar radiation. The spectral diversity of the various

soil components can then be used for many hyperspectral imagery

applications including target detection or classification. It is widely

admitted that the response of a particular type of soil can be well

approximated by a linear combination of a very few spectral com-

ponents, referred to as endmembers. Therefore, the data mostly lies

in a subspace, and the coordinates within this subspace provide in-

formation about the so-called abundances. A principal component

analysis (PCA) is usually carried out on the whole image in order

to estimate the endmembers subspace. This approach has the main

merit of being relatively simple and computationally efficient. How-

ever, some recent studies have questioned the validity of the linear

mixing model (LMM), and have instead investigated non-linear mix-

ing models [2]. Although potentially more accurate, this approach

suffers from a main drawback, namely its high computational cost.

Moreover, if the linear model is not fully valid for the whole image,

it can be appropriate for many parts of the image to be analyzed.

Thus it can be interesting to detect the image areas where the LMM

is questionable. To address this issue, we investigate a mixed ap-

proach where the subspace is estimated locally for each pixel of the

image. The evolution of the estimated local subspaces is then used to

characterize the existence and importance of non-linearities for each

pixel of the image. Towards this end, we need to perform subspace
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estimation with a possibly very limited number of samples. Since the

PCA of the whole image often provides quite an accurate approxi-

mation of the local subspaces, we intend to use this information in

order to improve estimation in the low sample support regime. This

paper studies a new Bayesian knowledge-aided subspace estimation

method appropriate for datasets composed of few samples.

Since this problem is relevant in numerous applications, we re-

cast it in a general framework. More precisely, let us consider an

N -dimensional observation space with K available snapshots gath-

ered column-wise in an N×K data matrix X, and let us assume that

X can be written as

X = HΨ+ N

where H is an N × p semi-orthogonal matrix (HT
H = I) whose

columns span the p-dimensional subspace of interest, Ψ is a p ×K
matrix whose columns contain the coordinates of the signal in the

range space R (H) of H, and N denotes the additive noise. Assuming

that the columns of N are independent and Gaussian distributed with

zero mean and covariance matrix σ2
IN , the maximum likelihood

(ML) estimator of R (H) is obtained from the p most significant left

singular vectors of X. Therefore, the singular value decomposition

(SVD) plays a central role in subspace estimation and is known to

provide very accurate estimates of R (H) in most cases. However, it

may yield inaccurate estimates either when the signal to noise ratio

is low or when the sample support is small. Moreover, when the

number of snapshots K is less than the subspace dimension p, X is

at most of rank K < p. Therefore it becomes impossible to recover

R (H) without any further information. For both cases, additional

prior information about H may prove to be helpful. A natural way

to introduce such knowledge is provided by the Bayesian framework

which is advocated in the present paper.

More precisely, we assume that H is a random matrix, with some

prior distribution π(H), and our goal is to estimate H from the pos-

terior distribution p(H|X). Similarly to [3, 4] we consider minimum

mean square distance (MMSD) estimators of H, i.e., estimators Ĥ of

H that minimize the average squared Frobenius norm of the differ-

ence between the projection matrices, viz E

{∥∥∥ĤĤT − HH
T
∥∥∥2

F

}
.

The rationale behind this approach is that this is a natural metric on

the Stiefel manifold [5,6]. Using this distance, the MMSD estimator

was shown to be given by [3, 4]

Ĥmmsd = argmax
Ĥ

E

{
Tr

{
Ĥ

T
HH

T
Ĥ

}}

= Pp

{∫
HH

T p (H|X) dH

}
(1)

where Tr {.} denotes the trace of a matrix and Pp {.} stands for the

p principal eigenvectors of the matrix between braces. The MMSD
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estimator thus amounts to finding the principal subspace of the pos-

terior mean of the projection matrix P = HH
T . Depending on the

prior distribution π(H), it may or may not be an easy task to com-

pute the MMSD estimator. In the sequel, we state our assumptions

regarding H and derive its corresponding MMSD estimator.

2. DATA MODEL AND SUBSPACE ESTIMATION

Consider the linear model (1) and assume that N is Gaussian dis-

tributed with independent columns so that the probability density

function of X, conditioned on H and Ψ, is given by

p (X|H,Ψ) ∝ etr

{
−

1

2σ2
(X− HΨ)T (X− HΨ)

}
(2)

where etr {.} stands for the exponential of the trace of the matrix

between braces and ∝ means proportional to. We assume here that

the white noise level σ2 is known. Since no knowledge about Ψ is

generally available, we treat it as a random matrix with uniform prior

distribution, i.e., π (Ψ) ∝ 1. Thus the distribution of X, conditioned

on H, is obtained as

p (X|H) =

∫
p (X|H,Ψ)π (Ψ) dΨ

∝ etr

{
−

1

2σ2
X

T
X+

1

2σ2
X

T
HH

T
X

}
. (3)

Note that p (X|H) depends on H only through P = HH
T . Let us

turn now to the hypotheses regarding H. We assume that we have

some a priori knowledge about the subspace spanned by the columns

of H: this knowledge can come from some available models or ex-

pertise. More precisely, we assume that the range space R (H) of

H is close to the range space of some semi-orthogonal matrix H̄.

Without loss of generality, this paper assumes that H̄ =
[
Ip 0

]T
.

In [4], we assumed that H was either drawn from a Bingham –

πB (H) ∝ etr
{
κHT

H̄H̄
T
H
}

– or a von Mises Fisher (vMF) dis-

tribution –πvMF (H) ∝ etr
{
κHT

H̄
}

– and we derived MMSD es-

timators of H. When H follows a Bingham prior distribution, the

MMSD estimator can be obtained in closed-form while, for a vMF

prior, a Gibbs sampling estimator has to be implemented to compute

the MMSD estimator (see [4] for details).

In this paper, we also consider MMSD estimators, but we take

a different route regarding the statistical modeling of H. More pre-

cisely, we look for a less constrained model for H and, moreover,

a model that only involves mild assumptions about the distribution

of the angles between H and H̄ (note that the distance between H

and H̄ only depends on these angles [4]). Doing so, we purposely

reduce the amount of prior information brought by the model and

hence hopefully get an improved robustness. The model proposed

herein is based on the CS decomposition of H, which writes [6]

H =

[
U1C

U2S

]
V

T
(4)

where U1 and V are p×p orthogonal matrices, U2 is an (N−p)×p
semi-orthogonal matrix (UT

2 U2 = Ip), C = diag (cos θ1, · · · , cos θp)
and S = diag (sin θ1, · · · , sin θp). The angles θk correspond to the

principal angles between R (H) and R
(
H̄
)

while the columns of[
U1

0

]
and HV are the associated principal vectors. The advantage of

such a representation is that the angles between R (H) and R
(
H̄
)

are directly revealed, and do not depend on the matrices U1, U2 and

V, which can be arbitrary.

Let us turn now to the prior distributions for the matrices U1

and U2 as well as the vector θ =
[
θ1 · · · θp

]T
. We assume

that U1 and U2 have uniform distributions on the orthogonal group

O(p) and the Stiefel manifold Sp,N−p, i.e., the set of (N − p) × p
matrices U2 such that UT

2 U2 = Ip. Regarding θ, we assume that θk
are independent and identically distributed (i.i.d.) random variables,

with uniform distribution on [0, θmax], i.e., θk ∼ U ([0, θmax]).

It should be pointed out that the proposed model is rather loose:

U1 and U2 are arbitrary matrices, while the angles θk are a priori uni-

formly distributed on [0, θmax] where θmax sets the maximum angle

between R (H) and R
(
H̄
)
: therefore, the smaller θmax, the closer

these two subspaces. In contrast, when θmax increases, the two sub-

spaces can be quite far apart. Consequently, for small θmax we can

expect the MMSD estimator to strongly rely on H̄, while for large

θmax the data X is likely to prevail. Moreover, θmax, which is the only

parameter of the proposed statistical model a user has to set, is a

more intuitively meaningful quantity than the concentration param-

eter κ that ruled the Bingham or vMF distributions in [4]. Indeed, it

is not always easy to select an appropriate value of κ and this value

can have a strong influence on the shape of the distribution. More-

over, a choice for κ induces a given distribution for the angles θk.

Therefore, compared to [4], the model presented here is less con-

strained and defined by a single parameter (viz θmax) which is more

intuitively appealing and easier to set.

Once the likelihood and the prior distributions have been set, we

are in a position to derive the posterior distributions. Using (3)-(4)

along with the partitioning X =
[
X

T
1 X

T
2

]T
of X, it is straightfor-

ward to show that the the joint posterior distribution of U1, U2 and

θ is given by

p (U1,U2,θ|X) ∝ p (X|H) π (U1) π (U2) π (θ)

∝ etr

{
1

2σ2

[
C
2
U

T
1 X1X

T
1 U1 + S

2
U

T
2 X2X

T
2 U2

]}

× etr

{
1

σ2
X

T
2 U2SCU

T
1 X1

}
π(U1)π(U2)π(θ). (5)

In order to obtain the MMSD estimator, we suggest, as in [4], to use

a Gibbs sampler which enables one to iteratively draw samples from

the full conditional distributions of (5). First, (5) implies that

p (U1|U2,θ,X) ∝ etr

{
1

2σ2

[
2UT

1 X1X
T
2 U2SC+ C

2
U

T
1 X1X

T
1 U1

]}
(6)

which is recognized as a Bingham-von-Mises-Fisher (BMF) distri-

bution with parameter matrices X1X
T
1 , 1

2σ2C
2 and 1

σ2X1X
T
2 U2SC

respectively [7]. An efficient sampling scheme to generate random

matrices drawn from a BMF distribution on the Stiefel manifold was

proposed in [7] and can thus be used to draw matrices from (6). Sim-

ilarly, looking carefully at (5) leads to

p (U2|U1,θ,X) ∝ etr

{
1

2σ2

[
2UT

2 X2X
T
1 U1CS+ S

2
U

T
2 X2X

T
2 U2

]}
(7)

which is a BMF distribution with parameter matrices X2X
T
2 , 1

2σ2 S
2

and 1
σ2X2X

T
1 U1CS. Therefore, the sampling scheme of Hoff can

also be used to draw matrices from the distribution in (7).
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Let us finally investigate the posterior distribution of θ

p (θ|U1,U2,X) ∝ etr

{
1

2σ2

[
C
2
U

T
1 X1X

T
1 U1 + S

2
U

T
2 X2X

T
2 U2

]}

× etr

{
1

σ2
X

T
2 U2SCU

T
1 X1

}
π(θ)

∝

p∏
k=1

exp
{
αk cos

2 θk + γk sin
2 θk

+2βk cos θk sin θk} I[0,θmax ](θk) (8)

where I[0,θmax ](θk) is the indicator function defined in the interval

[0, θmax] and where αk, βk , γk are the k-th elements of the diagonal

of 1
2σ2U

T
1 X1X

T
1 U1, 1

2σ2U
T
1 X1X

T
2 U2 and 1

2σ2U
T
2 X2X

T
2 U2, respec-

tively. The first thing to be noted is that the variables θk, conditioned

on U1, U2 and X, are independent and hence one needs to generate

p independent random variables. Unfortunately, the distribution in

(8) does not belong to any known class of distributions and, there-

fore, generating random variables drawn from p (θ|U1,U2,X) ap-

pears problematic. In order to overcome this problem, we propose

to resort to a Metropolis-Hastings (MH) move [8] which consists of

generating samples according to a proposal distribution and accept-

ing them according to a certain probability. In our case, we make the

change of variable xk = sin2 θk in (8), and come up with the equiv-

alent problem of finding a proposal distribution for the conditional

distribution of xk ∈
[
0, xmax = sin2 θmax

]
, which is is given by

p (xk|U1,U2,X) ∝ exp
{
−(αk − γk)xk + 2βkx

1/2
k (1− xk)

1/2
}

× x
−1/2
k (1− xk)

−1/2
I[0,xmax ](xk). (9)

Through preliminary experiments, we found out that a scaled beta

distribution q(xk) ∝
(

xk

xmax

)ak−1

(1 − xk

xmax
)bk−1, with a suitable

choice of ak and bk, provides a good approximation to (9) with a

high acceptance rate for the candidates.

The Gibbs sampling scheme allows one to generate a sequence

of random matrices H(n) =

[
U

(n)
1 C

(n)

U
(n)
2 S

(n)

]
whereC(n) = diag

(
cosθ(n)

)
and S

(n) = diag
(
sin θ(n)

)
, with U

(n)
1 , U

(n)
2 and θ(n) drawn from

their respective posterior distributions in (6), (7) and (8). These ma-

trices can in turn be used to approximate the MMSD estimator as

Ĥmmsd = Pp

⎧⎨
⎩ 1

Nr

Nbi+Nr∑
n=Nbi+1

H
(n)

(
H

(n)
)T

⎫⎬
⎭ (10)

where Nbi is the number of burn-in iterations and Nr is the number

of samples used for estimating H.

Remark 1. We would like to point out that a minimum mean-square

error (MMSE) estimator of H, which would entail approximating the

integral
∫
H p (H|X) dH by the arithmetic mean of the set of matri-

ces H(n), may not be meaningful here. Indeed, the range space of H

is given up to right multiplication by an orthogonal matrix and there-

fore, R
(
H

(n)
)

could be close to R (H) even if the actual matrices

H
(n) and H are not close. It ensues that the arithmetic mean of the

matrices H
(n) could result in a poor subspace estimate despite the

fact that, individually, the subspaces spanned by each matrix H
(n)

might be accurate. A maximum a posteriori (MAP) approach could

also be advocated where the MAP estimator would be obtained as

the matrix H
(n) which maximizes p

(
U

(n)
1 ,U

(n)
2 ,θ(n)|X

)
.

3. SIMULATIONS

In this section we assess the performance of the above estimators

through Monte-Carlo simulations. The performance measure will

be the average distance between the projection matrices ĤĤ
T and

HH
T where Ĥ stands for one of the estimators. More precisely, we

will display the average fraction of energy (AFE) of Ĥ in R (H)
which is defined as

AFE
(
Ĥ,H

)
= E

{
Tr

{
Ĥ

T
HH

T
Ĥ

}
/p

}
. (11)

In all simulations N = 20, p = 5 and H̄ =
[
Ip 0

]T
. The matrix

Ψ is generated from a Gaussian distribution with zero-mean and co-

variance matrix Ip and the signal-to-noise ratio is defined as SNR =
10 log10

(
p

Nσ2

)
. The angles between R (H) and R

(
H̄
)

are fixed

over all simulations and set to θ =
[
15◦ 25◦ 35◦ 45◦ 55◦

]T
which results in AFE

(
H, H̄

)
= 0.6509. The matrices U1 and

U2 are drawn randomly at each Monte-Carlo run and θmax is set to

θmax = 60◦. The number of burn-in iterations in the Gibbs sam-

pler is set to Nbi = 10 and Nr = 1000. The MMSD estimator (1)

is compared with the usual SVD-based estimator and the estimator

Ĥ = H̄ that only uses the a priori knowledge and does not make use

of the data. We successively investigate the influence of K and SNR
in figures 1 and 2.
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Fig. 1. Fraction of energy of Û in R (U) versus K. N = 20, p = 5,

SNR = 3dB and θmax = 60◦.

It can be observed that the MMSD estimator outperforms the

usual SVD-based estimator, for small K and small SNR: under

these conditions, it makes a sound use of the prior information and

provides more accurate estimates. Note also that it performs better

than the estimate Ĥ = H̄, and hence the prior by itself is not suffi-

cient.

4. APPLICATION TO HYPERSPECTRAL DATA

We now apply the subspace estimation scheme developed above to

a real hyperspectral image, acquired by the NASA spectro-imager

AVIRIS over Moffett Field, CA, in 1997. We consider a 50 × 50
sub-image which contains partly a lake (upper part of the sub-image)

and partly a coastal area (lower part of the sub-image) composed of

soil and vegetation, see [9] for a more detailed description. The

data is collected in N = 183 spectral bands. Under the linear
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Fig. 2. Fraction of energy of Û in R (U) versus SNR. N = 20,

p = 5, K = 5 and θmax = 60◦.

mixing model and in the absence of noise, the data matrix Y =[
y1 · · · yL

]
where y� ∈ R

N stands for the 	-th pixel, can be

decomposed as Y = MA where M =
[
m1 · · ·mR

]
. The vec-

tors mr , r = 1, · · · , R stand for the endmembers, i.e., the spectral

signatures which best describe the soil components. The columns

a� =
[
a�,1 · · · a�,R

]T
of the matrix A =

[
a1 · · ·aL

]
are the

so-called abundances: they satisfy the positivity constraint a�,r ≥ 0
and the sum-to-one property, i.e., aT

� 1R = 1 where 1R is the R× 1
vector whose elements are all equal to 1. The pixels y� thus be-

long to a simplex whose vertices are the R endmembers mr [9]. If

μ = L−1
∑L

�=1 y� denotes the mean value of the pixels, then the

centered data matrix X = Y−μ1T
L belongs to a p-dimensional sub-

space (with p = R − 1) which can be estimated by a number of

techniques, including PCA [9].

 AFE(Hest,Hbar) − SVD
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Fig. 3. Moffett image. AFE
(
Ĥ�, H̄

)
obtained with the SVD. N =

183, p = 2 and K = 4.

Usually, PCA is performed on the whole set of L pixels with

a view to obtain a subspace that fits the whole image. However,

the LMM may not be valid on the whole image and we intend to

use the MMSD estimator to detect the zones in the image where the

LMM might be questioned. Towards this end, we conduct subspace

 AFE(Hest,Hbar) − θ
max

=60°
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Fig. 4. Moffett image. AFE
(
Ĥ�, H̄

)
obtained with the CS-based

Bayesian MMSD estimator. N = 183, p = 2, K = 4 and θmax =
60◦.

estimation at the pixel level, i.e., the MMSD estimator is used to

estimate the subspace spanned by y� and its K−1 spectrally nearest

pixels: this local estimate is then compared to the global estimate H̄

obtained from PCA over the whole image. A very small distance

between these two subspaces means that the linear model described

by H̄ is rather accurate. On the other hand, a large distance can

result from a matrix H̄ that does not describe accurately the scene

around pixel 	, or from some non-linear mixing effects affecting the

pixel of interest. Figures 3 and 4 display AFE
(
Ĥ�, H̄

)
for the usual

SVD-based estimator and the proposed MMSD estimator. It can

be observed that a local SVD would predict rather large differences

between the local subspaces and H̄, especially for pixels in the lake

area. In contrast, the Bayesian MMSD estimator shows that H̄ is a

rather accurate subspace for the whole image, except for the pixels

along the shore. This seems logical as non-linear mixing effects are

more likely to occur in these zones, while the linear model is likely

to apply well elsewhere. Therefore, the MMSD estimator can serve

as a good indicator of the image regions where the LMM can be

questioned.
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