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ABSTRACT

This paper studies estimation algorithms for nonlinear hyperspec-
tral image unmixing. The proposed unmixing model assumes that
the pixel reflectances are polynomial functions of linear mixtures of
pure spectral components contaminated by an additive white Gaus-
sian noise. A hierarchical Bayesian algorithm and an optimization
method are proposed for solving the resulting unmixing problem.
The parameters involved in the proposed model satisfy constraints
that are naturally included in the estimation procedure. The perfor-
mance of the unmixing strategies is evaluated thanks to simulations
conducted on synthetic and real data.

Index Terms— Post nonlinear mixing model, hyperspectral im-
ages, MCMC methods, Taylor approximation.

1. INTRODUCTION

Spectral unmixing (SU) is one of the major issues when analyzing
hyperspectral images. SU consists of identifying the macroscopic
materials present in an hyperspectral image and quantifying the pro-
portions of these materials in all pixels of the image. Most SU
strategies assume that pixel reflectances are linear combinations of
pure component spectra (endmembers). The resulting linear mix-
ing model (LMM) has been widely used in the literature and has
shown promising results. However, as explained in [1], the LMM
can be inappropriate for some hyperspectral images, such as those
containing sand, trees or vegetation areas [2, 3]. Nonlinear mixing
models provide an interesting alternative to overcome the inherent
limitations of the LMM. Nonlinear models proposed in the hyper-
spectral image literature include the bidirectional reflectance-based
model proposed by Hapke [4] and the the bilinear models recently
studied in [2, 3, 5, 6]. This paper considers a wide class of nonlin-
ear mixing models referred to as post nonlinear mixing models (PN-
MMs). PNMMs are flexible generalizations of the LMM that have
been introduced in [7] for source separation problems (see also [8]).
In the hyperspectral imagery context, the endmember spectra can be
identified as the sources whereas the abundances are the mixing co-
efficients involved in the PNMM. This paper addresses the problem
of supervised nonlinear SU of hyperspectral images using PNMMs.
Supervised unmixing means here that the endmembers (the sources)
are known, whereas the abundances (the mixing coefficients) are un-
known and have to be estimated.

Prior knowledge regarding the pure spectral components con-
tained in the observed scene is rarely available in practical appli-
cations. As a consequence, the endmember spectra have to be ex-
tracted directly from the data using an endmember extraction algo-
rithm (EEA). In the last decades, many EEAs have been studied in
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the literature (the reader is invited to consult [9] for a recent review of
these methods). Most of existing EEAs implicitly rely on the LMM
and might be inappropriate for nonlinear models such as PNMMs.
However, as noticed in [1], geometric EEAs are still adapted to iden-
tify endmembers and can be reasonably employed when the mixing
model involves nonlinearities. Therefore, this paper proposes to ex-
tract the endmembers contained in the hyperspectral image using the
vertex component analysis (VCA) [10]. Once the endmembers have
been extracted from the image, we propose to estimate the abun-
dances and the nonlinearity parameters involved in the PNMM using
two estimation algorithms based on Bayesian and least-squares (LS)
methods.

The paper is organized as follows. Section 2 presents the
proposed PNMM for hyperspectral image analysis. Section 3 stud-
ies two algorithms for unmixing hyperspectral images using the
PNMM. Some simulation results on synthetic and real data are
shown and discussed in Section 4. Conclusions are reported in
Section 5.

2. POLYNOMIAL POST NONLINEAR MIXING MODEL

This section defines the nonlinear mixing model used for hyperspec-
tral image SU. A PNMM is introduced involving linear and quadratic
functions of the abundances. More precisely, the L-spectrum y =
[y1, . . . , yL]

T of a mixed pixel is defined as a nonlinear transforma-
tion g of a linear mixture of R spectra mr contaminated by additive
noise

y = g

(
R∑

r=1

armr

)
+ n = g (Ma) + n (1)

where mr = [mr,1, . . . ,mr,L]
T is the spectrum of the rth mate-

rial present in the scene, ar is its corresponding proportion, R is the
number of endmembers contained in the image and g is an appro-
priate nonlinear function from (0, 1)L to RL. Moreover, L is the
number of spectral bands and n is an additive independent and iden-
tically distributed (i.i.d) zero-mean Gaussian noise sequence with
variance σ2, denoted as n ∼ N

(
0L, σ

2IL
)
, where IL is the L× L

identity matrix. Note that the usual matrix and vector notations
M = [m1, . . . ,mR] and a = [a1, . . . , aR]

T have been used in
the right hand side of (1).

The choice of the nonlinearity g deserves a specific attention.
Polynomials, sigmoidal functions and combinations of polynomial
and sigmoidal nonlinearities have shown interesting properties for
source separation [8]. This study focuses on second order polyno-
mial nonlinearities g defined by

gb : (0, 1)L → RL

s 7→ [gb,1(s1), . . . , gb,L(sL)]
T



with s = [s1, . . . , sL]
T and

gb,i : (0, 1) → R
si 7→ gb,i(si) = si + bs2i (2)

for i = 1, . . . , L. This particular choice has the advantage of defin-
ing the nonlinearity by a unique parameter b whose value allows the
importance of the nonlinear terms to be characterized. An interesting
property of the resulting nonlinear model referred to as polynomial
post nonlinear mixing model (PPNMM) is that it reduces to the clas-
sical LMM for b = 0. Thus, we can expect unmixing results at least
as good as those presented in [11] or [12] for supervised SU. Another
motivation for using the PPNMM is the Weierstrass approximation
theorem which states that every continuous function defined on an
interval can be uniformly approximated by a polynomial with any
desired precision [13, p. 15]. As explained in [3], it is reasonable to
consider polynomials with first and second order terms (since higher
order terms can generally be neglected) which leads to (2). Straight-
forward computations allow the PPNMM observation vector (for a
given pixel of the image) to be expressed as follows

y = Ma + b(Ma)� (Ma) + n (3)

where � denotes the Hadamard (termwise) product. Note that the
resulting PPNMM includes bilinear terms such as those considered
in [5].

By studying the derivative of gb,i, it is straightforward to show
that the nonlinearity parameter b must be lower bounded by bmin =
−0.5 to make gb invertible. In this paper, we will assume that b be-
longs to a bounded interval (−0.3, 0.3) to ensure model invertibil-
ity. Moreover, due to physical considerations, the abundance vector
a satisfy the following positivity and sum-to-one constraints

R∑
r=1

ar = 1, ar ≥ 0, ∀r ∈ {1, . . . , R} . (4)

3. ESTIMATION METHODS

This section studies two estimation methods that can be used for
estimating the parameters a and b of the proposed PPNMM.

3.1. Hierarchical Bayesian algorithm

The Bayesian estimation algorithm introduced in [14] can be used
to estimate the unknown parameters x =

(
aT , b, σ2

)
of the model

(3). Appropriate prior distributions are assigned to the unknown
parameters associated to the PPNMM. The posterior distribution of
the unknown parameter vector can be derived from

f(x|y) ∝ f(y|x)f(x) (5)

where ∝ means “proportional to”, f(y|x) is the likelihood func-
tion of the observation vector y and f(x) is the prior distribution of
the unknown parameters. As in [14], f(x) is set to satisfy all con-
straints regarding the parameters, i.e., the positivity and sum-to-one
constraints for the abundance vector and the inequality constraint for
b. The standard Bayesian estimators (minimum mean square error
(MMSE) or maximum a posteriori (MAP)) of the PPNMM parame-
ters are then computed from the posterior distribution (5). To allevi-
ate the problems associated with this computation, a Markov chain
Monte Carlo method initially studied in [14] can be used. More pre-
cisely, an appropriate Gibbs sampler can be used to generate NMC

samples x(1), . . . ,x(NMC) asymptotically distributed according to
(5). The MAP and MMSE estimators can then by determined by

x̂MMSE =
1

Nr

Nr∑
i=1

x(i+Nbi)

x̂MAP = arg
x(i)

max f(x|y) i = Nbi + 1, . . . , Nbi +Nr

whereNbi is the number of burn-in iterations andNr = NMC−Nbi

is the number of iterations after convergence of the Gibbs sampler.
The advantage of this method is its ability to provide point estimates
(MAP or MMSE) for the unknown parameters as well as measures
of uncertainties (such as confidence intervals) about these estimates.
However, it suffers from high computational cost. The next section
presents a new estimation strategy which allows this computational
cost be to significantly reduced.

3.2. Taylor approximation

An alternative to the Bayesian algorithm presented in section 3.1 is
a least-squares (LS) method which has been used successfully for
linear unmixing [12]. The LS method associated with (3) consists of
minimizing the LS criterion

J(a, b) = ‖y − gb(Ma)‖22 (6)

where ‖.‖2 is the standard `2 norm, subject to the following con-
straints

R∑
r=1

ar = 1, ar ≥ 0, ∀r ∈ {1, . . . , R}

b ≥ −0.5. (7)

This minimization of (6) subject to the constraints (7) is not easy to
handle.

Following the strategy adopted in [5], we propose to approx-
imate the nonlinearity gb using a Taylor series expansion where
only first-order terms are considered. Let θ(i) = [a(i), k(i)]T de-
note the parameter vector estimate at the ith step of the proposed
iterative algorithm, where k(i) = b(i) + 0.5. Note that the pro-
posed reparametrization ensures all coordinates of θ(i) satisfy the
non-negativity constraint. These constraints are required to apply
the fully constrained least squares (FCLS) algorithm presented at
the end of this section. The corresponding estimated spectrum can
then be written

h(θ(i)) = Ma(i) +
(
k(i) − 0.5

)(
Ma(i)

)
�
(
Ma(i)

)
(8)

according to the model (3). The Taylor approximation of h at θ(i) is

h(θ) = h
(
θ(i)
)
+∇h

(
θ(i)
)(
θ − θ(i)

)
+ ε (9)

where∇h(θ(i)) is the gradient matrix of h(θ(i)) of size L× (R+
1), ε is a residual error vector of size L × 1 and θ is the unknown
parameter vector to be estimated. The vector θ(i+1) can then be
estimated by solving the following constrained LS problem

θ(i+1) = argmin
θ

∥∥∥y − h(θ(i))−∇h(θ(i))(θ − θ(i))∥∥∥2 (10)

subject to the constraints (7). Problem (10) can be solved by mod-
ifying the FCLS algorithm introduced in [12]. More precisely, the



FCLS algorithm has been introduced to solve the following opti-
mization problem

min
a
‖y −Ma‖2 , subject to (4). (11)

The FCLS algorithm includes the sum-to-one constraint of the abun-
dances as an additional observation equation in the criterion to be
minimized. The following optimization problem is then obtained

min
a

∥∥∥∥[yδ
]
−
[
M
δ1T

R

]
a
∥∥∥∥2
2

(12)

subject to the non-negativity constraints for the abundance vector a,
where δ ∈ R+ controls the impact of the sum-to-one constraint and
1R ∈ RR is a vector of ones (see [12] for more details).

Similarly, to solve (10), the sum-to-one constraint for the abun-
dances is included in an additional observation equation, leading to
the following optimization problem

min
θ

∥∥∥∥[zδ
]
−
[

M̃
δ1T

R 0

]
θ

∥∥∥∥2
2

(13)

subject to the non-negativity constraints for the parameter vector θ,
where M̃ = ∇h

(
θ(i)
)

is an L× (R+1) matrix, δ ∈ R+ controls
the impact of the sum-to-one constraint and

z = y − h
(
θ(i)
)
+∇h

(
θ(i)
)
θ(i) ∈ RL. (14)

The iterative procedure stops at the nth iteration, when∥∥∥θ(n) − θ(n−1)
∥∥∥2
2
≤ ρ, where ρ is a given threshold (set to ρ =

10−6 in our simulations).

4. SIMULATIONS

4.1. Synthetic data

The performance of the proposed nonlinear SU algorithms has
been investigated by unmixing 4 synthetic images of size 50 × 50.
The R = 3 endmembers have been extracted from the spectral
libraries provided with the ENVI software (i.e., green grass, olive
green paint and galvanized steel metal). The different images de-
noted as I1, . . . , I4 have been generated according to the LMM,
the bilinear model of [5] (referred to as FM), the generalized bi-
linear model (GBM) of [6] and the proposed PPNMM, respec-
tively. For each image, the abundance vectors ap, p = 1, . . . , 2500,
have been randomly generated according to a uniform distribu-
tion over the simplex defined by the positivity and sum-to-one
constraints (4). The nonlinearity coefficients are uniformly drawn
in the set (0, 1) for the GBM. The parameter b defining the PP-
NMM has been drawn uniformly in the interval (−0.3, 0.3). All
images have been corrupted by an additive Gaussian noise of vari-
ance σ2 = 2.8 × 10−3, corresponding to a signal-to-noise ratio
SNR = L−1σ−2 ‖f (M, a)‖2 ' 15 dB. The quality of the unmix-
ing procedures is measured by comparing the estimated and actual
abundance vectors using the root mean square error

RMSE =

√√√√ 1

PR

P∑
p=1

‖âp − ap‖2 (15)

where ap and âp are the actual and estimated abundance vectors for
the pth pixel of the image, P is the number of image pixels and R is

the number of endmembers extracted from the image. Table 1 shows
the RMSEs associated with the images I1, . . . , I4 and the consid-
ered estimation procedures. These results show that the abundances
estimated by the Bayesian algorithm and proposed LS method are
similar. However, the LS method has the advantage to provide a
much smaller computational cost. The unmixing quality can be also
evaluated by using the mean reconstruction error

RE =

√√√√ 1

P

P∑
p=1

‖ŷp − yp‖2 (16)

where yp is the pth observation vector and ŷp its estimate (note that
ŷ = Mâ+ b̂(Mâ)� (Mâ) for the PPNMM). Table 1 compares the
mean reconstruction errors (REs) obtained using the two proposed
unmixing algorithms for the 4 synthetic images. These results show
that the two algorithms provide similar REs for all images. Fig. 1
shows the histograms of the estimated nonlinear parameter b (de-
noted as b̂) for the four images I1, . . . , I4 (from left to right) using
the Bayesian algorithm and LS method. The histograms are simi-
lar for the two algorithms. Moreover, the shape of these histograms
seems to be interesting for detecting the kind of linearity or nonlin-
earity characterizing the spectral mixing model.

RMSE (×10−2) RE (×10−2) Time (s)
Bayes. LS Bayes. LS Bayes. LS

I1 2.91 2.92 5.28 5.28 5940 3.6
I2 3.42 3.42 5.29 5.29 6300 4.3
I3 3.23 3.23 5.28 5.28 6600 4.1
I4 2.94 2.93 5.28 5.28 5940 4.3

Table 1. RMSEs, REs and computational cost of I1, . . . , I4.

Fig. 1. Distribution of the nonlinearity parameter b estimated by the
Bayesian algorithm (red lines) and the LS method (black lines).

4.2. Real data

The real image considered in this section is composed of L = 189
spectral bands and was acquired in 1997 by the airborne visible in-
frared imaging spectrometer (AVIRIS) over the Cuprite mining site
in Nevada. A sub-image of size 50× 50 pixels has been chosen here
to evaluate the proposed unmixing procedure. The scene is mainly
composed of muscovite, alunite and kaolinite, as explained in [15].
The endmembers are extracted by VCA [10], with R = 3. The esti-
mation algorithms presented in Section 3 have been applied indepen-
dently to each pixel of the scene using the endmembers extracted by
VCA. The abundance maps estimated by the proposed algorithms
are presented in Fig. 2. They are similar to the abundance maps
that would be obtained with estimation algorithms associated to the



LMM. However, the advantage of the PPNMM is that it allows the
nonlinearities between the observations and the endmembers to be
estimated. For instance, Fig. 3 (Top) shows the estimated posterior
distributions of b on the Cuprite image (2500 pixels). These results
show that the observations are nonlinearly related to the endmem-
bers (since b 6= 0) but that these nonlinearity are weak (the estimated
values of b are close to 0). Fig. 3 (Bottom) also shows the b maps
estimated by the two algorithms for the Cuprite scene.

Fig. 2. Top: Spectra estimated by the VCA algorithm for the Cuprite
scene. Middle: Abundance maps estimated on the Cuprite scene by
the Bayesian algorithm. Bottom: Abundance maps estimated on the
Cuprite scene by the LS method.

5. CONCLUSIONS AND FUTURE WORKS

Two nonlinear unmixing algorithms were presented for hyperspec-
tral imagery. These algorithms assumed that the hyperspectral image
pixels are related to the endmembers by a polynomial post-nonlinear
mixing model. The constraints related to the unknown parameters
of this model were considered for the two algorithms. The proposed
unmixing strategies provided promising results. Future works in-
clude the derivation of nonlinearity detectors based on the proposed
model.
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