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ABSTRACT

This paper studies a hierarchical Bayesian model for nonlinear hy-
perspectral image unmixing. The proposed model assumes that the
pixel reflectances are polynomial functions of linear mixtures of pure
spectral components contaminated by an additive white Gaussian
noise. The parameters involved in this model satisfy constraints that
are naturally expressed within a Bayesian framework. A Gibbs sam-
pler allows one to sample the unknown abundances and nonlinearity
parameters according to the joint posterior of interest. The perfor-
mance of the resulting unmixing strategy is evaluated thanks to sim-
ulations conducted on synthetic and real data.

Index Terms— Post nonlinear mixing model, hyperspectral im-
ages, hierarchical Bayesian analysis, MCMC methods.

1. INTRODUCTION

Spectral unmixing (SU) is one of the major issues when analyzing
hyperspectral images. SU consists of identifying the macroscopic
materials present in an hyperspectral image and quantifying the pro-
portions of these materials in all pixels of the image. Most SU strate-
gies assume that pixel reflectances are linear combinations of pure
component spectra. The resulting linear mixing model (LMM) has
been widely used in the literature and has provided promising re-
sults. However, as explained in [1], the LMM can be inappropriate
for some hyperspectral images, such as those containing sand, trees
or vegetation areas [2, 3]. Nonlinear mixing models provide an in-
teresting alternative for overcoming the inherent limitations of the
LMM. Nonlinear models proposed in the hyperspectral image liter-
ature include the bidirectional reflectance-based model proposed by
Hapke [4] and the the bilinear models recently studied in [2, 3, 5].
This paper considers a wide class of nonlinear mixing models re-
ferred to as post nonlinear mixing models (PNMMs). PNMMs are
flexible generalizations of the standard LMMs that have been intro-
duced in [6] for source separation problems (see also [7]). In the
hyperspectral imagery context, the endmember spectra can be iden-
tified as the sources whereas the abundances are the mixing coef-
ficients involved in the PNMM. This paper addresses the problem
of supervised nonlinear spectral unmixing of hyperspectral images
using PNMMs. Supervised unmixing means here that the endmem-
bers (the sources) are known, whereas the abundances (the mixing
coefficients) are unknown and have to be estimated.

Prior knowledge regarding the pure spectral components con-
tained in the observed scene is rarely available in practical appli-
cations. As a consequence, the endmember spectra have to be ex-
tracted directly from the data using an endmember extraction algo-
rithm (EEA). In the last decades, many EEAs have been developed
to identify the pure spectral components contained in a hyperspec-
tral image (the reader is invited to consult [8] for a recent review of

these methods). Most EEAs implicitly rely on the LMM and might
be inappropriate for nonlinear models such as PNMMs. However,
as noticed in [1], geometric EEAs are still adapted to identify end-
members and can be reasonably employed when the mixing model
involves nonlinearities. Therefore, this paper proposes to extract
the endmembers contained in the hyperspectral image using vertex
component analysis (VCA) [9]. Once the endmembers have been
extracted from the image, we propose to estimate the abundances,
the noise variance and the nonlinearity parameters involved in the
PNMM using a Bayesian estimation algorithm. Appropriate prior
distributions are assigned to the unknown parameters and hyperpa-
rameter associated to the PNMM. The standard Bayesian estima-
tors are difficult to be derived directly from the resulting Bayesian
model. Thus they are approximated thanks to samples generated by
a Markov chain Monte Carlo (MCMC) method.

The paper is organized as follows. Section 2 presents a PNMM
for hyperspectral image analysis. Section 3 summarizes the differ-
ent components of a hierarchical Bayesian model used for unmixing
hyperspectral images using the proposed PNMM. Section 4 derives
a Gibbs sampler which allows one to sample from the joint posterior
distribution of the unknown PNMM parameters. Some simulation
results on synthetic and real data are shown and discussed in Section
5. Conclusions are reported in Section 6.

2. POLYNOMIAL POST NONLINEAR MIXING MODEL

This section defines the nonlinear mixing model used for hyper-
spectral image SU. A PNMM is introduced involving linear and
quadratic functions of the abundances. Precisely, the L-spectrum
y = [y1, . . . , yL]T of a mixed pixel is defined as a nonlinear trans-
formation g of a linear mixture of R spectra mr contaminated by
additive noise

y = g

(
R∑
r=1

αrmr

)
+ n = g (Mα) + n (1)

where mr = [mr,1, . . . ,mr,L]T is the spectrum of the rth mate-

rial present in the scene, αr its corresponding proportion, R is the
number of endmembers contained in the image and g is an appro-
priate nonlinear function. In (1), L is the number of spectral bands
and n is an additive independent and identically distributed (i.i.d)
zero-mean Gaussian noise sequence with variance σ2, denoted as
n ∼ N

(
0L, σ

2IL
)
, where IL is the L × L identity matrix. Note

that the usual matrix and vector notations M = [m1, . . . ,mR] and
α = [α1, . . . , αR]T have been used in the right hand side of (1).

The choice of the nonlinearity g deserves a specific attention.
Polynomials, sigmoidal functions and combinations of polynomial



and sigmoidal nonlinearities have shown interesting properties for
source separation [7]. This study focuses on second order polyno-
mial nonlinearities g defined by

g : [0, 1]L → RL

s 7→ [g1(s1), . . . , gL(sL)]T

with s = [s1, . . . , sL]T and

gi : [0, 1] → R
si 7→ gi(si) = si + bs2i (2)

for i = 1, . . . , L. An interesting property of the resulting nonlinear
model referred to as polynomial post nonlinear mixing model (PP-
NMM) is that it reduces to the classical LMM for b = 0. Thus,
we can expect unmixing results at least as good as those presented in
[10] for supervised SU. Another motivation for using the PPNMM is
the Weierstrass approximation theorem which states that every con-
tinuous function defined on an interval can be uniformly approxi-
mated by a polynomial with any desired precision [11, p. 15]. As
explained in [3], it is reasonable to consider polynomials with first
and second order terms (since higher order terms can generally be
neglected) which leads to (2). Straightforward computations allow
one to express the PPNMM observation vector (for a given pixel of
the image) as follows

y = Mα + b(Mα)� (Mα) + n (3)

where � denotes the Hadamard product. Note that the resulting PP-
NMM includes bilinear terms such as those considered in [5].

By studying the derivative of gi, it is straightforward to show that
the nonlinearity parameter b must be lower bounded by bmin = −0.5
to make g invertible. Moreover, due to physical considerations, the
abundance vector α satisfy the following positivity and sum-to-one
constraints

R∑
r=1

αr = 1, αr ≥ 0, ∀r ∈ {1, . . . , R} . (4)

3. HIERARCHICAL BAYESIAN MODEL

This section generalizes the hierarchical Bayesian model introduced
in [10] to the PPNMM. The unknown parameter vector associated
to the PPNMM contains the pixel abundances α (satisfying the con-
straints (4)), the nonlinearity parameter b and the additive noise vari-
ance σ2. This section summarizes the likelihood and the parameters
priors associated to the proposed hierarchical Bayesian PPNMM.

3.1. Likelihood

Equation (3) shows that y|α, b, σ2 ∼ N
(
g (Mα) , σ2IL

)
. As a

consequence, the likelihood function of y can be expressed as

f(y|α, b, σ2) =

(
1

2πσ2

)L
2

exp

(
−‖y − g(Mα)‖2

2σ2

)
(5)

where ‖x‖ =
√

xT x is the standard `2 norm for a vector x ∈ RL.

3.2. Parameter and hyperparameter priors

In order to satisfy the sum-to-one constraint, the abundance vector
can be rewritten α = [α−k, αk]

T with k ∈ {1, . . . , R}, α−k =

[α1, . . . , αk−1, αk+1, . . . , αR]T and αk = 1−
∑R
r=1,r 6=k αr . The

positivity constraints in (4) impose that α−k belongs to the follow-
ing simplex Sk

Sk =

α−k

∣∣∣∣∣∣αr ≥ 0, ∀r 6= k,
∑
r 6=k

αr ≤ 1

 . (6)

A uniform prior distribution on Sk is chosen for α−k to reflect the
absence of prior knowledge about the abundance vector.

A conjugate inverse-gamma prior is chosen for σ2

σ2
∣∣∣ν, γ ∼ IG (ν

2
,
γ

2

)
(7)

where the hyperparameter ν is fixed to ν = 2 whereas γ is included
within the Bayesian model. This prior has shown interesting proper-
ties in many practical applications [10, 12].

As explained above, the nonlinearity parameter b is lower boun-
ded by bmin = −0.5 to make the nonlinear transformation g invert-
ible. The parameter b is also assumed to be upper bounded by a real
parameter δ characterizing the importance of the nonlinearity g (in-
deed, the larger δ, the larger the distance between g and the identity
function). A uniform prior distribution on Dδ = [−0.5, δ] is finally
assigned to the nonlinear parameter b.

A Jeffreys’ prior is assigned to the hyperparameter γ

f(γ) ∝ 1

γ
IR+(γ) (8)

where IR+(.) is the indicator function defined on R+ (see [10, 12]
for motivations).

3.3. Posterior distribution of θ

The following hierarchical structure allows one to compute the pos-
terior distribution of the unknown parameter vector θ =

{
α−k, b, σ

2
}

f(θ|y) ∝
∫
f(y|θ)f(θ|γ)f(γ)dγ (9)

where f(y|θ) and f(γ) are defined in (5) and (8). By assuming the
parameters σ2, b and α−k are a priori independent, the posterior
distribution f(θ|y) can be computed up to a multiplicative constant

f(α−k, b, σ
2|y) ∝ 1

σ2
f(y|α−k, σ2, b)1Sk×Dδ (α−k, b) (10)

where ∝ means “proportional to”. The next section derives an ef-
ficient Metropolis-within-Gibbs algorithm allowing one to sample
according to the posterior distribution f(α−k, b, σ

2|y).

4. GIBBS SAMPLER FOR NONLINEARITY AND
ABUNDANCE ESTIMATION

The principle of the Gibbs sampler is to sample according to the
conditional distributions of the posterior of interest [13, p. 371-
424]. The conditional distributions associated to the posterior (10)
are summarized below.



4.1. Generating samples according to f(α−k|y, b, σ2)

According to the last section, once k ∈ {1, . . . , R} has been se-
lected, the conditional distribution of α−k is

f(α−k|y, σ2, b) ∝ exp

(
−‖y − g(Mα)‖2

2σ2

)
1Sk (α−k). (11)

To obtain good mixing properties, the abundance vector α−k is
updated coordinate by coordinate thanks to a Metropolis-Hasting
move. In this study, a new abundance coefficient is proposed fol-
lowing a Gaussian random walk procedure. The variance of the
proposal distribution has been adjusted to obtain an acceptance rate
close to 0.5, as recommended in [14, p. 8].

4.2. Generating samples according to f(b|y,α−k, σ2)

Using (5), it can be easily shown that b is distributed according to
the following truncated Gaussian distribution

b|y,α−k, σ2 ∼ NDδ
(
µ, σ2

b

)
(12)

where

µ =
yTh(M,α)

‖h(M,α)‖2
, σ2

b =
1

‖h(M,α)‖2

and h(M,α) = (Mα)� (Mα). Generating samples according to
a truncated Gaussian distribution can be achieved as in [15].

4.3. Generating samples according to f(σ2|y,α−k, b)

By considering the posterior distribution (10), it can be shown
that σ2|y,α−k, b is distributed according to the following inverse-
gamma distribution

σ2|y,α−k, b ∼ IG
(
L

2
,
‖y − g(Mα)‖2

2

)
. (13)

After generating samples using the procedures detailed in Sec-
tions 4.1, 4.2 and 4.3, the minimum mean square error (MMSE) es-
timator of the unknown parameters can be approximated by com-
puting the empirical averages of these samples, after a short burn-in
period. The length of the burn-in period has been determined using
appropriate convergence diagnoses [14].

5. SIMULATION RESULTS

5.1. Synthetic data

The performance of the Bayesian estimation procedure is first inves-
tigated on a simple example. A synthetic pixel has been generated
according to the PPNMM (4) with R = 3 endmembers extracted
from the spectral libraries provided with the ENVI software (i.e.,
construction concrete, green grass and dark yellowish brown mica-
ceous loam), abundances α = [0.3, 0.6, 0.1] and a nonlinearity co-
efficient b = 0.3. The mixture has been corrupted by an additive
white Gaussian noise with σ2 = 0.0033. Using the standard sig-

nal to noise ratio definition SNR = L−1σ−2
∥∥∥g (∑R

r=1 mrαr
)∥∥∥2

,

this value of σ2 yields SNR ≈ 15 dB. As explained before, the prior
for the nonlinearity parameter b is uniform on the interval [−0.5, δ],
where δ is the only hyperparameter that needs to be adjusted for the
proposed model. All simulations presented in this paper have been
obtained with δ = 2 which was determined by cross validation. Fig.
1 shows the estimated posterior distributions of the abundances and

the nonlinearity parameter b for a Markov chain withNMC = 20000
samples (including Nbi = 1000 burn-in iterations). The histograms
of the generated samples are clearly in good agreement with the ac-
tual values of the model parameters. Fig. 2 shows the abundances
and nonlinearity MMSE estimates and the corresponding standard
deviations versus SNR (the horizontal red lines indicate the actual
values of the parameters). Note that SNRs are not below 30 dB for
the actual spectrometers. Consequently, the proposed algorithm pro-
vides accurate estimation of all parameters for the SNRs of interest.

Fig. 1. Actual values (vertical red dashed lines) and estimated poste-
rior distributions (blue lines) of the abundances (3 left plots) and the
nonlinearity coefficient (right plot).

Fig. 2. MMSE estimates (cross) and standard deviations (vertical
bars) for α = [0.3, 0.6, 0.1]T and b = 0.3 versus SNR.

5.2. Spectral unmixing of an AVIRIS image

The real image considered in this section is composed of L = 189
spectral bands and was acquired in 1997 by the airborne visible in-
frared imaging spectrometer (AVIRIS) over the Cuprite mining site
in Nevada. A sub-image of size 50× 50 pixels has been chosen here
to evaluate the proposed unmixing procedure. The scene is mainly
composed of muscovite, alunite and kaolinite, as explained in [16].
The endmembers are extracted by VCA [9], with R = 3, and are
shown in Fig. 3 (top) . The hierarchical Bayesian algorithm pre-
sented in Section 4 has been applied independently on each pixel
of the scene using the endmembers extracted by VCA. The image
abundance maps estimated by the proposed algorithm are presented
in Fig. 3 (bottom). They are similar to the abundance maps obtained
with a Bayesian algorithm associated to the LMM studied in [10]
(middle). However, the advantage of the PPNMM is that it allows
one to analyze the nonlinearities between the observations and the



endmembers. For instance, Fig. 4 shows the estimated posterior
distribution of b on the Cuprite image (2500 pixels). These results
show that the observations are nonlinearly related to the endmem-
bers (since b 6= 0) but that these nonlinearity are weak (the estimated
values of b are close to 0).

Fig. 3. Top: the 3 endmember spectra estimated by the VCA algo-
rithm for the Cuprite scene. Middle: abundance maps for LMM +
Bayesian algorithm [10]. Bottom: abundance maps for the proposed
PPNMM and Bayesian algorithm.

Fig. 4. Histogram of the MMSE estimates of b for the Cuprite image.

Table 1. Average MSE for the Cuprite scene.

Fan Model
LMM

PPNLMM
Bayesian Algo. FCLS

9.31× 10−4 4.59× 10−4 4.43× 10−4 1.42× 10−4

In order to analyze the performance of the proposed PPNMM,
the average MSEs between the observed pixels and the model ap-
proximations (defined by MSE = L−1 ‖y − g(Mα)‖2 for the PP-
NMM and MSE = L−1 ‖y −Mα‖2 for the LMM) are reported
in Table 1 for four different scenarios (bilinear model proposed in
[5] + Bayesian algorithm, LMM + Bayesian algorithm [10], LMM +
FCLS algorithm [17] and PPNMM + proposed Bayesian algorithm).
These results are clearly in favor of the proposed nonlinear model
and Bayesian estimation algorithm.

6. CONCLUSIONS

A new Bayesian nonlinear unmixing algorithm was presented for hy-
perspectral imagery. This algorithm assumed that the hyperspectral
image pixels are related to the endmembers by a polynomial post-
nonlinear mixing model. The constraints related to the unknown pa-
rameters of this model were considered by defining appropriate prior
distributions. To alleviate the computational complexity of the re-
sulting Bayesian estimators, we derived a Gibbs sampler generating
samples asymptotically distributed according to the posterior distri-
bution of the proposed model. The generated samples were then used
to estimate the model parameters and measures of uncertainty (confi-
dence intervals) for these estimates. The proposed unmixing strategy
provided promising results. Future works include the derivation of
nonlinearity detectors based on the proposed model or the study of
other nonlinear mixing models for hyperspectral imagery.
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