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ABSTRACT 

This paper presents a nonlinear mixing model for hyperspec­
tral image unmixing. The proposed model assumes that the 
pixel reflectances are post-nonlinear functions of unknown 
pure spectral components (referred to as endmembers) con­
taminated by an additive white Gaussian noise. The nonlinear 
effects affecting endmembers are approximated by polyno­
mial functions leading to a polynomial post-nonlinear mixing 
model. A Bayesian strategy is used to estimate the parame­
ters of this model yielding an unsupervised nonlinear unmix­
ing algorithm. Due to the large number of parameters to be 
estimated, an efficient constrained Hamiltonian Markov chain 
Monte Carlo method is developed to sample according to the 
posterior of the Bayesian model. The performance of the re­
sulting unmixing strategy is evaluated on synthetic data. 

Index Terms- Hyperspectral imagery, spectral unmix­
ing, Hamiltonian Monte Carlo, post-nonlinear model. 

1. INTRODUCTION 

Identifying macroscopic materials and quantifying the pro­
portions of these materials are major issues when analyzing 
hyperspectral images. This spectral unmixing (SU) problem 
has been widely studied for applications where the pixel re­
f1ectances are linear combinations of pure component spec­
tra. However, as explained in [1], the linear mixing model 
(LMM) can be inappropriate for some hyperspectral images. 
Nonlinear mixing models provide an interesting alternative 
for overcoming the inherent limitations of the LMM. Several 
models have been studied in the literature to handle specific 
kinds of nonlinearities. In particular, the bilinear models re­
cently studied in [2-5] address the problem of scattering ef­
fects, mainly observed in vegetation or urban areas. Other 
more flexible unmixing techniques have been also proposed 
to handle wider class of nonlinearities, including radial basis 
function networks and kernel-based models. 
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This paper considers a polynomial post-nonlinear mixing 
model (PPNMM) that has recently shown interesting proper­
ties for the SU of hyper spectral images [6]. Precisely, we pro­
pose a fully unsupervised Bayesian unmixing algorithm based 
on the PPNMM (estimating jointly the endmembers and the 
other model parameters). However, the classical Bayesian es­
timators cannot be easily computed from the PPNMM pos­
terior distribution. To alleviate this problem, a Markov chain 
Monte Carlo (MCMC) method is used to generate samples ac­
cording to this posterior. Due to the large number of param­
eters to be estimated we propose to use Hamiltonian Monte 
Carlo (HMC) moves within a Gibbs sampler. HMCs are sim­
ulation strategies based on Hamiltonian dynamics which can 
improve the convergence and mixing properties of classical 
MCMC methods [7]. We investigate recent HMC methods 
handling constrained variables [7, Chap. 5] that can be ap­
plied to our Bayesian model for spectral unmixing. 

The paper is organized as follows. Section 2 introduces 
the PPNMM for hyperspectral image analysis. Section 3 
presents the hierarchical Bayesian model associated with the 
proposed PPNMM and its posterior distribution. A Gibbs 
sampling strategy coupling standard simulations (according 
to the full conditional of the posterior) and constrained HMC 
(CHMC) moves is presented in Section 4. Simulation re­
sults conducted on synthetic data are shown and discussed in 
Section 5. Conclusions are finally reported in Section 6. 

2. PROBLEM FORMULATION 

2.1. Polynomial Post-Nonlinear Mixing Model 

This section recalls the nonlinear mixing model used in [6] 
for hyperspectral image SUo We consider a set of N observed 
spectra Y n  = [Y n,l, . . .  , Y n,L]T, n E {I, . . .  , N} where L is 
the number of spectral bands. Each spectrum is defined as 
a nonlinear transformation g n of a linear mixture of R end­
members lir contaminated by additive noise 



where mr = [rnr,l, "" 'rnr,L]T is the spectrum of the 
rth material present in the scene, ar, n  is its corresponding 
proportion in the nth pixel, R is the number of endmem­
bers contained in the image and 9 n is a nonlinear func­
tion associated with the nth pixel. Moreover, e n is an ad­
ditive independent and identically distributed (i.i.d) zero­
mean Gaussian noise sequence with variance (52, denoted as 
e n rv N (0 L, (52 I L) . Note that the usual matrix and vector 
notations M = [ml, "" mRJ and a n = [al, n, "" aR, n]T 
have been used in the right hand side of (I). As in [6], the N 
nonlinear functions 9 n are defined as second order polyno­
mial nonlinearities defined by 9 n (s) = s + bn(s C;) s), where 
s E �L, bn  is a real parameter, and C;) denotes the Hadamard 
(termwise) product. An interesting property of the resulting 
PPNMM is that it reduces to the classical LMM for b n  = O. 
Motivations for considering polynomial nonlinearities have 
been discussed in [6]. Straightforward computations allow 
the PPNMM observation matrix to be expressed as follows 

Y = MA + [(MA) 8 (MA)] diag (b) + E (2) 

where A = [al, "" aN] is an R x N matrix, Y = 
[Yl, "" YN] and E = [el, "" eN] are L x N matrices, 
and b = [bl, . . .  , bNjT is an N x 1 vector containing the 
nonlinearity parameters. Moreover, diag (b) is an N x N 
diagonal matrix containing the elements of the vector b. 

2.2. Abundance reparametrization 

Due to physical considerations, the abundance vectors a n sat­
isfy the following positivity and sum-to-one constraints 

R 
L ar, n  = 1, ar, n  > 0, \lr E {I, . . .  , R} . (3) 
r=l 

To handle these constraints, we propose to reparameterize the 
abundance vectors belonging to the set 

using the following transformation (rrr-l ) { 1 - zr n  ifr<R ar, n  = 

k=l 
Zk, n  x I

' 
if r = R (4) 

This transformation has been recently suggested in [8]. The 
main motivation for using the latent variables zr, n  instead of 
ar, n  is the fact that the constraints (3) (for the nth abundance 
vector a n) express as 

O<zr, n<l, \lrE{I, . . .  , R - l} (5) 

for the nth coefficient vector Z n  = [Zl, n, . . .  , zR-l, njT. As a 
consequence, the constraints (5) are much easier to handle for 
the sampling procedure than (3). The next section presents 
the Bayesian model associated with the PPNMM for SUo 
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3. BAYESIAN MODEL 

This section generalizes the hierarchical Bayesian model in­
troduced in [6] to estimate the unknown parameter vector 
associated with the PPNMM containing the reparameterized 
abundances Z = [z 1, . . .  , Z N] ,  the endmember matrix M, the 
nonlinearity parameter vector b and the additive noise vari­
ance (52. This section summarizes the likelihood and the pa­
rameters priors that are used for this estimation. 

3.1. Likelihood 

Assuming prior independence between the observed pixels 
and using (2), the joint likelihood of the observation matrix 
Y can be expressed as 

f(YIM, Z, b, (52) ex: (5-NLetr [_ (Y - X;:;Y - X) ] 
(6) 

where ex: means "proportional to", etr(·) denotes the expo­
nential trace and X = MA + [(MA) 8 (MA)] diag (b) is 
an L x N matrix. 

3.2. Parameter priors 

To reflect the lack of prior knowledge about the abundances, 
we propose to assign a prior distribution to the vector Z n en­
suring that a n is uniformly distributed in its definition do­
main. More precisely, we assign beta priors z n,r rv Be(R -
r, 1), r E {I, . . .  , R - I} and assume prior independence be­
tween the elements of Z n. As explained in [8], this choice 
yields an abundance vector a n uniformly distributed in the 
set S. Assuming prior independence between the coefficient 
vectors {z n} n=l,,,, ,N leads to 

R-l { N } 
f(Z) = g B(R � r, I)N 11 z ;;,-;r-l 

where B(·, ·) is the Beta function. 
Each endmember mr = [rnr,l, "" mor,L]T 

flectance vector satisfying the following constraints 

(7) 

IS a re-

o :::; rnr,i! :::; 1, \lr E {I, . . .  , R} , \It' E {I, . . .  , L} . (8) 

For each endmember mr, we propose to use a Gaussian prior 
truncated on [0, I]L to satisfy the constraints (8), i.e. , 

(9) 

This prior requires to define the mean vectors fir and the 
noise variance 82• We propose to select the mean vectors fir 
as the pure components previously identified by the nonlinear 
EEA studied in [9] and referred to as "Heylen". The variance 
82 reflects the degree of confidence given to this prior infor­
mation (82 = 50 in our simulations). 



The PPNMM reduces to the LMM for bn = O. Since the 
LMM is probably relevant for most observed pixels it makes 
sense to assign prior distributions to the nonlinearity parame­
ters that enforce sparsity for the vector b. Consequently, the 
following conjugate Bernoulli-Gaussian prior is assigned to 
each parameter bn 

1 ( b2 ) f(bnlw, O"�) = (1 -w)5(bn) + w J27Wl exp ----;. (10) 
27r O" b 20" b 

where 5(·) denotes the Dirac delta function. Note that the 
prior distributions for {bn} n= 1 N share the same hyperpa­
rameters w E [0,1] and O"� E]O;·+OO[. Moreover, the weight 
w is the prior probability of having a nonlinearly mixed pixel 
in the image. Assuming prior independence between the non­
linearity parameters {bn} n =1... .. N ' the joint prior distribution 
of the nonlinearity parameter vector b is given by 

N 
II f(bnlw, O"�). (1\ ) 
n=l 

A Jeffreys' prior is assigned to the noise variance 0"2 

(12) 

which reflects the absence of knowledge for this parameter. 

3.3. Hyperparameter priors 

The performance of the proposed Bayesian model for spectral 
unmixing depends on the values of the hyperparameters O"� 
and w. When the hyperparameters are difficult to adjust, it is 
classical to include them in the unknown parameter vector, re­
sulting in a hierarchical Bayesian model [6, 10]. A conjugate 
inverse-gamma prior is assigned to O"�, i.e., O"� rv IQ (r, v) 
where (r, v) are real parameters fixed to obtain a flat prior 
for the variance O"� ((r, v) will be set to (10-1, 10-1) in the 
simulation section). A uniform prior distribution is assigned 
to the hyperparameter w, i.e., w rv U[O,l] (w) since there is no 
a priori information regarding the proportions of linearly and 
nonlinearly mixed pixels in the image. 

3.4. Joint posterior distribution 

The joint posterior distribution of the unknown parameters 
o = {Z, M, b, 0"2, O"�, w} can be computed using 

f( 0IY) ex: f(YIO)f( 0) (13) 

where f(YIO) has been defined in (6). By assuming a priori 

independence between the parameters Z, M, b and 0"2 and 
between the hyperparameters O"b and w, the joint prior distri­
bution of the 0 can be expressed as 

f(O) = f(Z) f(M)f(0"2)f(bI0"�, w)f(O"�)f(w). (14) 
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Unfortunately, it is difficult to obtain closed form expres­
sions for the standard Bayesian estimators associated with 
(13). Thus we propose to generate samples asymptotically 
distributed according to (\3). Due to the large number of 
parameters to be sampled, we use HMC moves which allow 
the number of sampling steps to be reduced and the mixing 
properties of the sampler to be improved. The basic principles 
of the HMC methods that are used to sample asymptotically 
from (\3) can be found in [1\]. The generated samples are 
then used to compute the MMSE estimator of O. The next 
section defines the Gibbs sampler (including constrained 
HMC moves) used to sample from (\3). 

4. GIBBS SAMPLER 

The principle of the Gibbs sampler is to sample according to 
the conditional distributions of the posterior of interest [12, 
Chap. 10]. Due to the large number of parameters to be es­
timated, it makes sense to use a block Gibbs sampler to im­
prove the convergence of the sampling procedure. More pre­
cisely, we propose to sample sequentially M, Z, b, 0"2, O"� and 
w using six moves that are detailed in the next sections. 

4.1. Sampling the coefficient matrix Z 
Sampling from f(ZIY, M, b, 0"2, O"�, w) is difficult due to the 
complexity of this distribution. In this case, it is classical to 
use an accept/reject procedure to update the coefficient matrix 
Z (leading to a hybrid Metropolis-within-Gibbs sampler). It 
can be shown that 

N 
2 II 2 f(ZIY, M, b, O" ,00b,W ) = f(znIYn, M, bn, O"), (15) 

n=l 
i.e. , the N coefficients vectors {zn} n=l N are a posteriori 

independent and can be sampled indepen&ntly (in a parallel 
manner). Straightforward computations lead to 

f( I b 2) ( 1IYn-xnI 12 ) Zn Yn, M, n, O" ex: exp � - 20"2 
R-1 

1 () II 
R-r-1 X (O,l)R-l Zn Zn,r 

r 
(\6) 

where Xn = gn (Man), l(O,l)R-l (.) denotes the indicator 
function over (0, 1 )R-1. The distribution (16) can be related 
to a potential energy that is then used within a CHMC method 
to update the vector Zn. For space limitations, we do not 
detail this CHMC method. The reader is invited to consult a 
separate technical report for more details [11]. 

4.2. Sampling the endmember matrix M 
From (13) and (14), it can be seen that 

L 
f(MIY, Z, b, 0"2, 82, M) = II f (me,: lYe,:. Z, b, 0"2, 82, me,: ) 

e=l 



where mR,: (resp. IDe,: and Ye,J is the fth row ofM (resp. of 
M and Y) and 

(17) 

with te = ATme,: + diag(b) [(ATme,:) 8 (ATme,:)]. 
Thus, the rows of the endmember matrix M can be sampled 
independently similarly to the CHMC procedure described in 
the previous section by introducing the L potential energies 
associated with each mR,: (see [11] for details). 

4.3. Sampling the nonlinearity parameter vector b 

Using (13) and (14), it can be easily shown that the condi­
tional distribution of b n Iy n, M, Z n, (J"2, W, (J"� is the following 
Bernoulli-Gaussian distribution 

bnl Y n, M, Z n, (J"2, W, (J"� rv (1 - w�)r5(bn) + w�N (,Ln, s;;) 
(18) 

where 

* W 
wn = 

f3n + w(l - f3n) , 
(J"b (/L;; ) f3n = - exp - -2 2 . Sn sn 

(19) 

For each bn, the conditional distribution (18) does not de­
pend on {bdk#n' Consequently, the nonlinearity parameters 
{bn} n=1... .. N can be sampled independently. 

4.4. Sampling the noise variance (J"2 
By considering the posterior distribution (13), it can be shown 
that (J"2IY, M, Z, b is distributed according to the following 
inverse-gamma distribution 

with tr(·) the matrix trace, from which it is easy to sample. 

4.5. Sampling the hyperparameters (J"� and w 
Looking carefully at the posterior distribution (13), it can be 
seen that (J"� I b, I, v is distributed according to the following 
inverse-gamma distribution 

(21) 
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with h = {nlb n  cJ O} , no = Ilbll o (where 11.110 is the fo 
norm, i.e. , the number of elements of b that differ from zero) 
and nl = N - no. Similarly, we obtain 

wlb rv Be(nl + 1, no + 1). (22) 

Of course, sampling according to (21) and (22) is straightfor­
ward. 

The small number of sampling steps is due to the high 
parallelization properties of the procedure used to generate 
the N coefficient vectors {z n} n=l N' the N nonlinear­
ity parameters {bn} n=l, ... ,N and th�"L reflectance vectors 
{mR,Je=l, ... ,L ' After generating NMC samples using the 
moves detailed above, the MMSE estimator of the unknown 
parameters can be approximated by computing the empiri­
cal averages of these samples, after an appropriate bum-in 
period 1. The next section studies the performance of the 
proposed algorithm for synthetic hyperspectral images. 

5. SIMULATIONS 

The performance of the proposed SU algorithm is first evalu­
ated by unmixing three synthetic images h, 12, h with N = 

2500 pixels. The R = 3 endmembers observed at L = 207 

different spectral bands and contained in these images have 
been extracted from the spectral libraries provided with the 
ENVI software. The first image h has been generated using 
the LMM. The image 12 has been generated according to the 
PPNMM and h has been generated according to the general­
ized bilinear mixing model (GBM) presented in [5]. For each 
image, the abundance vectors have been randomly generated 
according to a uniform distribution in the admissible set de-
fined by St = {a 10 < aT < 0. 9, ��=l aT = I} to ensure 
that there is no pure pixel in the images. All images have 
been corrupted by an i.i.d Gaussian noise sequence of vari­
ance (J"2 = 10- 4 , corresponding to an average signal-to-noise 
ratio SNR ':':' 21dB for the three images. The nonlinearity co­
efficients are uniformly drawn in the set [0, 1] for the GBM. 
The parameters b n  have been generated uniformly in the set 
[-0. 3, 0. 3] for the PPNMM. 

Different estimation procedures have been considered for 
the three mixing models. Two unmixing algorithms have been 
considered for the LMM. The first strategy extracts the end­
members using the N-FINDR algorithm [14] and estimates 
the abundances using the FCLS algorithm [15] (it is referred 
to as "SLMM" for supervised LMM). The second strategy is a 
Bayesian algorithm which jointly estimates the endmembers 
and the abundance matrix [10] (it is referred to as "ULMM" 
for unsupervised LMM). Two approaches have also been con­
sidered for the PPNMM. The first strategy uses the nonlinear 
endmember extraction algorithm (EEA) studied in [9] and the 
gradient-based approach based on the PPNMM studied in [6] 

I The length of the bum-in period has been determined using appropriate 

convergence diagnoses [13]. 



for estimating the abundances and the nonlinearity parame­
ters. This strategy is referred to as "SPPNMM" (supervised 
PPNMM). The second strategy is the proposed unmixing pro­
cedure referred to as "UPPNMM" (unsupervised PPNMM). 
The unmixing strategy used for the GBM is the EEA studied 
in [9] and the Bayesian algorithm presented in [5] for abun­
dance estimation. 

The quality of the unmixing procedures can be evaluated 
by the root normalized mean square error (RNMSE) defined 

V N 
2 by RNMSE = L n=l lla n - a nll /(NR), where a n and 

a n are the actual and estimated abundance vectors for the nth 
pixel of the image. Table 1 shows the RNMSEs associated 
with the images h to h for the different estimation methods. 
These results show that the UPPNMM performs better (in 
term of RNMSE) than the other considered unmixing meth­
ods for the three images. Moreover, the proposed method pro­
vides similar results when compared with the ULMM for the 
linearly mixed image h. 

The quality of endmember estimation is evaluated by the 
spectral angle mapper (SAM) defined by 

where fiT is the rth actual endmember and mT its estimate. 
Table 2 compares the performance of the different endmem­
ber estimation algorithms using the SAM (averaged over 
the R = 3 endmembers (ASAM)). This table shows that 
the proposed UPPNMM yields accurate endmember estima­
tions. Moreover, these results illustrate the robustness of 
the PPNMM regarding model mis-specification. Note that 
the ULMM and the UPPNMM provide similar results (in 
term of ASAM) for the image h generated according to the 
LMM. Additional simulation results including reconstruc­
tion performance and simulations with different numbers of 
endmembers can be found in [11]. 

Table 1. Abundance RNMSEs (x 10-2): synthetic images. 
h h h 

(LMM) (PPNMM) (GBM) 

LMM 
SLMM 3.78 13.21 6.83 
ULMM 0.66 10.87 4.21 

PPNMM 
SPPNMM 4.18 6.04 4.13 
UPPNMM 0.37 0.81 1.38 

GBM 4.18 11.15 5.02 

Table 2. SAMs (x 10-2): synthetic images. 
N-Findr ULMM Heylen UPPNMM 

h 4.95 0.52 6.38 0.42 

h 7.44 8.23 7.92 0.39 
13 7.46 4.66 7.19 1.63 

6. CONCLUSIONS AND FUTURE WORK 

We proposed a new hierarchical Bayesian algorithm for un­
supervised nonlinear spectral umnixing of hyperspectral im-
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ages. This algorithm assumed that each pixel of the image 
is a post-nonlinear mixture of the endmembers contaminated 
by additive Gaussian noise. Due to the complexity of the 
posterior distribution associated with the proposed Bayesian 
model, constrained Hamiltonian Monte Carlo moves were in­
cluded into a Gibbs sampler to sample according to this poste­
rior. The MMSE estimator of the unknown model parameters 
was then computed from the generated samples. Simulations 
conducted on synthetic data illustrated the interest of the pro­
posed model for linear and nonlinear spectral unmixing and 
provided promising results. An important advantage of this 
model is its flexibility regarding the absence of pure pixels in 
the image. Future work includes the estimation of the number 
of endmembers contained in the image and mixed using the 
proposed post-nonlinear mixing model. 
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