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Traditional view of signal processing

[Wikipedia]



Modern signal processing

measurements sampled

signal

Ånumerical linear algebra

Åoptimization

Åsubspaces

Åsparsity



In many applications, the most natural signal models are 

inherently continuous

Translating this to a discrete, finite setting can be subtle

Modeling on the continuum



Bandlimited functions

Perhaps the most basic model is that          is bandlimited

The continuous -time Fourier transform of a function          

is given by

We say that          is bandlimited (with bandlimit ) if 

for



Sampling bandlimited functions

More specifically, let      denote the sampling period and let

denote the sequence of samples we obtain

The sampling theorem shows us that no information is lost 

provided

òIf we sample a signal at twice its highest    

frequency, then we can recover it exactly.ó

Whittaker -Nyquist-Kotelnikov-Shannon 



Windows of samples

To simplify our notation, we will assume without loss of 

generality that               so that

: sampling at the Nyquist rate

: sampling faster than the Nyquist rate

degrees of freedom

degrees of freedom?



Models for bandlimited signals

If              , we expect that     has           degrees of freedom

How can we represent this mathematically? 

From bandlimitedness we have

The discrete Fourier transform (DFT) gives a representation of 

the form



Models for bandlimited signals

If              , we expect that     has           degrees of freedom

How can we represent this mathematically? 

The DFT should be sparse



Models for bandlimited signals

If              , we expect that     has           degrees of freedom

How can we represent this mathematically? 

The DFT should be sparse ðbut it usually isnõté

spectral

leakage



A better model

The DFT is simply the wrong basis for compactly representing 

this structure

A much better choice: discrete prolate spheroidal sequences

Slepian basis. Defined by the vectors that

satisfy the eigenvalue equation

The first               eigenvalues .

The remaining eigenvalues .



Suppose that we wish to minimize

over all subspaces of dimension 

Another perspective: Subspace fitting

Optimal subspace is spanned by 

the first    Slepian basis elements



The prolate matrix

From either perspective, it is not hard to show that the 

Slepian basis elements are the eigenvectors of the prolate 

matrix



Bottom line

Windowed and sampled bandlimited signals live in

a subspace with an effective dimension of 

Other frequency bands handled by simply modulating the 

Slepian basis elements to different center frequencies


